Characterization and control of open quantum systems beyond quantum noise spectroscopy

View/ Open
File version
Version of Record (VoR)
Author(s)
Youssry, A
Paz-Silva, GA
Ferrie, C
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
The ability to use quantum technology to achieve useful tasks, be they scientific or industry related, boils down to precise quantum control. In general it is difficult to assess a proposed solution due to the difficulties in characterizing the quantum system or device. These arise because of the impossibility to characterize certain components in situ, and are exacerbated by noise induced by the environment and active controls. Here, we present a general purpose characterization and control solution making use of a deep learning framework composed of quantum features. We provide the framework, sample datasets, trained models, ...
View more >The ability to use quantum technology to achieve useful tasks, be they scientific or industry related, boils down to precise quantum control. In general it is difficult to assess a proposed solution due to the difficulties in characterizing the quantum system or device. These arise because of the impossibility to characterize certain components in situ, and are exacerbated by noise induced by the environment and active controls. Here, we present a general purpose characterization and control solution making use of a deep learning framework composed of quantum features. We provide the framework, sample datasets, trained models, and their performance metrics. In addition, we demonstrate how the trained model can be used to extract conventional indicators, such as noise power spectra.
View less >
View more >The ability to use quantum technology to achieve useful tasks, be they scientific or industry related, boils down to precise quantum control. In general it is difficult to assess a proposed solution due to the difficulties in characterizing the quantum system or device. These arise because of the impossibility to characterize certain components in situ, and are exacerbated by noise induced by the environment and active controls. Here, we present a general purpose characterization and control solution making use of a deep learning framework composed of quantum features. We provide the framework, sample datasets, trained models, and their performance metrics. In addition, we demonstrate how the trained model can be used to extract conventional indicators, such as noise power spectra.
View less >
Journal Title
npj Quantum Information
Volume
6
Issue
1
Copyright Statement
© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Subject
Nanotechnology