Electrostatic Polysulfides Confinement to Inhibit Redox Shuttle Process in the Lithium Sulfur Batteries
Author(s)
Ling, Min
Yan, Wenjun
Kawase, Ayako
Zhao, Hui
Fu, Yanbao
Battaglia, Vincent S
Liu, Gao
Griffith University Author(s)
Year published
2017
Metadata
Show full item recordAbstract
Cationic polymer can capture polysulfide ions and inhibit polysulfide shuttle effect in lithium sulfur (Li–S) rechargeable batteries, enhancing the Li–S battery cycling performance. The cationic poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino) propyl]urea] quaternized (PQ) with a high density quaternary ammonium cations can trap the lithium polysulfide through the electrostatic attraction between positively charged quaternary ammonium (R4N+) and negatively charged polysulfide (Sx2–). PQ binder based sulfur electrodes deliver much higher capacity and provide better stability than traditional polyvinylidene fluoride ...
View more >Cationic polymer can capture polysulfide ions and inhibit polysulfide shuttle effect in lithium sulfur (Li–S) rechargeable batteries, enhancing the Li–S battery cycling performance. The cationic poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino) propyl]urea] quaternized (PQ) with a high density quaternary ammonium cations can trap the lithium polysulfide through the electrostatic attraction between positively charged quaternary ammonium (R4N+) and negatively charged polysulfide (Sx2–). PQ binder based sulfur electrodes deliver much higher capacity and provide better stability than traditional polyvinylidene fluoride (PVDF) binder based electrodes in Li–S cells. A high sulfur loading of 7.5 mg/cm2 is achieved, which delivers a high initial areal capacity of 9.0 mAh/cm2 and stable cycling capacity at around 7.0 mAh/cm2 in the following cycles.
View less >
View more >Cationic polymer can capture polysulfide ions and inhibit polysulfide shuttle effect in lithium sulfur (Li–S) rechargeable batteries, enhancing the Li–S battery cycling performance. The cationic poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino) propyl]urea] quaternized (PQ) with a high density quaternary ammonium cations can trap the lithium polysulfide through the electrostatic attraction between positively charged quaternary ammonium (R4N+) and negatively charged polysulfide (Sx2–). PQ binder based sulfur electrodes deliver much higher capacity and provide better stability than traditional polyvinylidene fluoride (PVDF) binder based electrodes in Li–S cells. A high sulfur loading of 7.5 mg/cm2 is achieved, which delivers a high initial areal capacity of 9.0 mAh/cm2 and stable cycling capacity at around 7.0 mAh/cm2 in the following cycles.
View less >
Journal Title
ACS Applied Materials & Interfaces
Volume
9
Issue
37
Subject
Chemical sciences
Engineering
Science & Technology
Nanoscience & Nanotechnology
Materials Science, Multidisciplinary