• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Ti–C bonds reinforced TiO2@C nanocomposite Na-ion battery electrodes by fluidized-bed plasma-enhanced chemical vapor deposition

    Author(s)
    Yao, S
    Ma, Y
    Xu, T
    Wang, Z
    Lv, P
    Zheng, J
    Ma, C
    Yu, K
    Wei, W
    Ostrikov, K
    Griffith University Author(s)
    Ostrikov, Kostya (Ken)
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Carbon coatings hold great promise for next-generation non-conductive energy storage nanomaterials. However, simplicity, stable, uniformity and high-performance remain unresolved issues. Here, unique synergy of the fluidized bed reactor with plasmas enables highly-effective, single-step fluidized-bed plasma-enhanced chemical vapor deposition (FB-PECVD) of uniform, low-temperature carbon coatings on TiO2 nano-powder (TiO2@C). Plasma-specific effects induce the formation of new phases that are beneficial for energy storage. The 6 nm carbon layer is grown within only 10 min, while the TiO2 maintains its anatase phase. The unique ...
    View more >
    Carbon coatings hold great promise for next-generation non-conductive energy storage nanomaterials. However, simplicity, stable, uniformity and high-performance remain unresolved issues. Here, unique synergy of the fluidized bed reactor with plasmas enables highly-effective, single-step fluidized-bed plasma-enhanced chemical vapor deposition (FB-PECVD) of uniform, low-temperature carbon coatings on TiO2 nano-powder (TiO2@C). Plasma-specific effects induce the formation of new phases that are beneficial for energy storage. The 6 nm carbon layer is grown within only 10 min, while the TiO2 maintains its anatase phase. The unique plasma conditions make it possible to form Ti–C bonds at the Ti/C interface at much lower temperatures than achievable otherwise. The electronic transport at the interface and structural stability are thus greatly improved. Consequently, TiO2@C shows excellent electrochemical performances as a negative electrode of sodium ion battery, such as specific discharge capacity of 290.2 mA h g−1 at 50 mA g−1 and very stable long-term cyclability (101.2% capacity retention over 300 cycles at 4000 mA g−1). Our results show that FB-PECVD is not only a versatile method for bond-reinforced interface nanoparticle coating with carbon, but also provide a new strategy for designing hybrid-phase electrochemically active nanocomposite materials.
    View less >
    Journal Title
    Carbon
    Volume
    171
    DOI
    https://doi.org/10.1016/j.carbon.2020.09.023
    Subject
    Physical Sciences
    Chemical Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/400779
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander