• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Nanoconfined fusion of g-C3N4 within edge-rich vertically oriented graphene hierarchical networks for high-performance photocatalytic hydrogen evolution utilizing superhydrophillic and superaerophobic responses in seawater

    Author(s)
    Xu, Chenxuan
    Wu, Shenghao
    Xiong, Guoping
    Guo, Xinzheng
    Yang, Huachao
    Yan, Jianhua
    Cen, Kefa
    Bo, Zheng
    Ostrikov, Kostya Ken
    Griffith University Author(s)
    Ostrikov, Ken
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Two-dimensional photocatalysts often suffer severe aggregation due to the inevitable van der Waals forces between nanosheets, which limits their photocatalytic water-splitting efficiency. Herein, a rational design of confined synthesis of g-C3N4 nanomeshes (GCN) on N-doped vertically-oriented graphene (NVG) arrays for enhanced hydrogen evolution is reported. The aggregation of 2D g-C3N4 nanosheets is effectively avoided via physical separation by electrically conductive NVG networks. Well-defined hierarchical architecture of the GCN/NVG photocatalyst endows with superaerophobicity and simultaneously enhanced light absorption. ...
    View more >
    Two-dimensional photocatalysts often suffer severe aggregation due to the inevitable van der Waals forces between nanosheets, which limits their photocatalytic water-splitting efficiency. Herein, a rational design of confined synthesis of g-C3N4 nanomeshes (GCN) on N-doped vertically-oriented graphene (NVG) arrays for enhanced hydrogen evolution is reported. The aggregation of 2D g-C3N4 nanosheets is effectively avoided via physical separation by electrically conductive NVG networks. Well-defined hierarchical architecture of the GCN/NVG photocatalyst endows with superaerophobicity and simultaneously enhanced light absorption. Experimental and ab initio simulation results suggest that the protruding graphene edges induce charge redistribution, thus enhancing interfacial charge separation. The GCN/NVG samples demonstrate a high areal hydrogen evolution rate of 41.7 μmol h−1 cm−2 (225 L m−2 in 24 h, STP) in water and 45.8 μmol h−1 cm−2 (246.2 L m−2 in 24 h, STP) in simulated seawater. This work creates further opportunities for the development of earth-abundant photocatalysts.
    View less >
    Journal Title
    Applied Catalysis B: Environmental
    Volume
    280
    DOI
    https://doi.org/10.1016/j.apcatb.2020.119461
    Subject
    Physical chemistry
    Chemical engineering
    Environmental engineering
    Science & Technology
    Physical Sciences
    Publication URI
    http://hdl.handle.net/10072/400781
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander