Multiphase Ni-Fe-selenide nanosheets for highly-efficient and ultra-stable water electrolysis
Author(s)
Huang, Jun
Wen, Shuting
Chen, Guangliang
Chen, Wei
Wang, Guoxu
Fan, Huafeng
Chen, Dongliang
Song, Changsheng
Li, Mengchao
Wang, Xingquan
Li, Leliang
Tao, Mengping
Li, Bojia
Wang, Xinghua
Ostrikov, Kostya Ken
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
Transition metal selenides are highly promising for clean hydrogen energy generation by overall water electrolysis. Here we report a new approach wherein highly efficient and ultra-stable bifunctional electrocatalyst is developed by synergistic atmospheric-pressure plasma, hydrothermal and selenization treatments of bimetallic electrodes leading to multiphase Ni-Fe-selenide nanosheets (MNFSNs). The remarkable performance in water splitting is evidenced by the low overpotentials for delivering a current density of 10 and 300 mA cm−2 (j10 and j300), which are only 56 and 288 mV for HER, and 200 and 342 mV for OER, respectively, ...
View more >Transition metal selenides are highly promising for clean hydrogen energy generation by overall water electrolysis. Here we report a new approach wherein highly efficient and ultra-stable bifunctional electrocatalyst is developed by synergistic atmospheric-pressure plasma, hydrothermal and selenization treatments of bimetallic electrodes leading to multiphase Ni-Fe-selenide nanosheets (MNFSNs). The remarkable performance in water splitting is evidenced by the low overpotentials for delivering a current density of 10 and 300 mA cm−2 (j10 and j300), which are only 56 and 288 mV for HER, and 200 and 342 mV for OER, respectively, along with robust durability. Moreover, the current densities 10 and 100 mA cm-2 are achieved at low cell voltages of 1.46 and 1.60 V, thus outperforming most of the reported electrocatalysts in two-electrode alkaline water electrolyzers. Ab initio atomistic simulations identify the active catalytic sites formed by Ni atoms located at the heterointerfaces between the FeSe2 and NiSe2 phases.
View less >
View more >Transition metal selenides are highly promising for clean hydrogen energy generation by overall water electrolysis. Here we report a new approach wherein highly efficient and ultra-stable bifunctional electrocatalyst is developed by synergistic atmospheric-pressure plasma, hydrothermal and selenization treatments of bimetallic electrodes leading to multiphase Ni-Fe-selenide nanosheets (MNFSNs). The remarkable performance in water splitting is evidenced by the low overpotentials for delivering a current density of 10 and 300 mA cm−2 (j10 and j300), which are only 56 and 288 mV for HER, and 200 and 342 mV for OER, respectively, along with robust durability. Moreover, the current densities 10 and 100 mA cm-2 are achieved at low cell voltages of 1.46 and 1.60 V, thus outperforming most of the reported electrocatalysts in two-electrode alkaline water electrolyzers. Ab initio atomistic simulations identify the active catalytic sites formed by Ni atoms located at the heterointerfaces between the FeSe2 and NiSe2 phases.
View less >
Journal Title
Applied Catalysis B: Environmental
Volume
277
Subject
Physical Chemistry (incl. Structural)
Chemical Engineering
Environmental Engineering
Science & Technology
Physical Sciences