• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Dilated residual networks with multi-level attention for speaker verification

    Author(s)
    Wu, Y
    Guo, C
    Gao, H
    Xu, J
    Bai, G
    Griffith University Author(s)
    Bai, Guangdong
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    With the development of deep learning techniques, speaker verification (SV) systems based on deep neural network (DNN) achieve competitive performance compared with traditional i-vector-based works. Previous DNN-based SV methods usually employ time-delay neural network, limiting the extension of the network for an effective representation. Besides, existing attention mechanisms used in DNN-based SV systems are only applied to a single level of network architectures, leading to insufficiently extraction of important features. To address above issues, we propose an effective deep speaker embedding architecture for SV, which ...
    View more >
    With the development of deep learning techniques, speaker verification (SV) systems based on deep neural network (DNN) achieve competitive performance compared with traditional i-vector-based works. Previous DNN-based SV methods usually employ time-delay neural network, limiting the extension of the network for an effective representation. Besides, existing attention mechanisms used in DNN-based SV systems are only applied to a single level of network architectures, leading to insufficiently extraction of important features. To address above issues, we propose an effective deep speaker embedding architecture for SV, which combines a residual connection of one-dimensional dilated convolutional layers, called dilated residual networks (DRNs), with a multi-level attention model. The DRNs can not only capture long time-frequency context information of features, but also exploit information from multiple layers of DNN. In addition, the multi-level attention model, which consists of two-dimensional convolutional block attention modules employed at the frame level and the vector-based attention utilized at the pooling layer, can emphasize important features at multiple levels of DNN. Experiments conducted on NIST SRE 2016 dataset show that the proposed architecture achieves a superior equal error rate (EER) of 7.094% and a better detection cost function (DCF16) of 0.552 compared with state-of-the-art methods. Furthermore, the ablation experiments demonstrate the effectiveness of dilated convolutions and the multi-level attention on SV tasks.
    View less >
    Journal Title
    Neurocomputing
    Volume
    412
    DOI
    https://doi.org/10.1016/j.neucom.2020.06.079
    Subject
    Engineering
    Psychology
    Publication URI
    http://hdl.handle.net/10072/400801
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander