• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Causal Convolutional Encoder Decoder-Based Augmented Kalman Filter for Speech Enhancement

    Thumbnail
    View/Open
    Roy457467-Accepted.pdf (1.181Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Roy, Sujan Kumar
    Paliwal, Kuldip K
    Griffith University Author(s)
    Paliwal, Kuldip K.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Speech enhancement using augmented Kalman filter (AKF) suffers from the biased estimates of the linear prediction coefficients (LPCs) of speech and noise signal in noisy conditions. The existing AKF was particularly designed to enhance the colored noise corrupted speech. In this paper, a causal convolutional encoder decoder (CCED)-based method utilizes the LPC estimates of the AKF for speech enhancement. Specifically, a CCED network is used to estimate the instantaneous noise spectrum for computing the LPCs of noise on a framewise basis. Each noise corrupted speech frame is pre-whitened by a whitening filter, which is ...
    View more >
    Speech enhancement using augmented Kalman filter (AKF) suffers from the biased estimates of the linear prediction coefficients (LPCs) of speech and noise signal in noisy conditions. The existing AKF was particularly designed to enhance the colored noise corrupted speech. In this paper, a causal convolutional encoder decoder (CCED)-based method utilizes the LPC estimates of the AKF for speech enhancement. Specifically, a CCED network is used to estimate the instantaneous noise spectrum for computing the LPCs of noise on a framewise basis. Each noise corrupted speech frame is pre-whitened by a whitening filter, which is constructed with the noise LPCs. The speech LPCs are computed from the pre-whitened speech. The improved speech and noise LPCs enables the AKF to minimize residual noise as well as distortion in the enhanced speech. Objective and subjective testing on NOIZEUS corpus reveal that the enhanced speech produced by the proposed method exhibits higher quality and intelligibility than the benchmark methods in various noise conditions for a wide range of SNR levels.
    View less >
    Conference Title
    2020 14th International Conference on Signal Processing and Communication Systems (ICSPCS)
    DOI
    https://doi.org/10.1109/icspcs50536.2020.9310011
    Copyright Statement
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Artificial intelligence
    Signal processing
    Publication URI
    http://hdl.handle.net/10072/400833
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander