• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Going beyond RGD: screening of a cell-adhesion peptide library in 3D cell culture

    Author(s)
    Sarwat, Mariah
    Surrao, Denver C
    Huettner, Nick
    St John, James A
    Dargaville, Tim R
    Forget, Aurelien
    Griffith University Author(s)
    St John, James A.
    Surrao, Denver
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    In tissue engineering, cell-adhesion peptides (CAPs) such as the ubiquitous arginine–glycine–aspartic acid (RGD) sequence have allowed the functionalization of synthetic materials to mimic macromolecules of the extracellular matrix (ECM). However, the variety of ECM macromolecules makes it challenging to reproduce all of the native tissue functions with only a limited variety of CAPs. Screening of libraries of CAPs, analogous to high-throughput drug discovery assays, can help to identify new sequences directing cell organization. However, challenges to this approach include the automation of cell seeding in three dimensions ...
    View more >
    In tissue engineering, cell-adhesion peptides (CAPs) such as the ubiquitous arginine–glycine–aspartic acid (RGD) sequence have allowed the functionalization of synthetic materials to mimic macromolecules of the extracellular matrix (ECM). However, the variety of ECM macromolecules makes it challenging to reproduce all of the native tissue functions with only a limited variety of CAPs. Screening of libraries of CAPs, analogous to high-throughput drug discovery assays, can help to identify new sequences directing cell organization. However, challenges to this approach include the automation of cell seeding in three dimensions and characterization methods. Here, we report a method for robotically generating a library of 16 CAPs to identify a microenvironment capable of directing a chain-like morphology in olfactory ensheathing cells (OECs), a cell type of particular interest for guiding axon growth in spinal cord injury repair. This approach resulted in the identification of one CAP not previously reported to interact with OECs to direct their morphology into structures suitable for potential axon guidance. The same screening approach should be applicable to any range of cell types to discover new CAPs to direct cell fate or function.
    View less >
    Journal Title
    Biomedical Materials
    Volume
    15
    Issue
    5
    DOI
    https://doi.org/10.1088/1748-605X/ab9d6e
    Subject
    Biomedical Engineering
    Medical Biotechnology
    Science & Technology
    Materials Science, Biomaterials
    Engineering
    Publication URI
    http://hdl.handle.net/10072/400839
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander