• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Mass Production and Pore Size Control of Holey Carbon Microcages

    Author(s)
    Zhang, Lei
    Liu, Xiaoxiao
    Dou, Yuhai
    Zhang, Binwei
    Yang, Huiling
    Dou, Shixue
    Liu, Huakun
    Huang, Yunhui
    Hu, Xianluo
    Griffith University Author(s)
    Dou, Yuhai
    ZHANG, LEI
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Architectural control of porous solids, such as porous carbon cages, has received considerable attention for versatile applications because of their ability to interact with liquids and gases not only at the surface, but throughout the bulk. Herein we report a scalable, facile spray‐pyrolysis route to synthesize holey carbon microcages with mosquito‐net‐like shells. Using the surfaces of water droplets as the growth templates, styrene–butadiene rubber macromolecules are controllably cross‐linked, and size‐controllable holes on the carbon shells are generated. The as‐formed carbon microcages encapsulating Si nanoparticles ...
    View more >
    Architectural control of porous solids, such as porous carbon cages, has received considerable attention for versatile applications because of their ability to interact with liquids and gases not only at the surface, but throughout the bulk. Herein we report a scalable, facile spray‐pyrolysis route to synthesize holey carbon microcages with mosquito‐net‐like shells. Using the surfaces of water droplets as the growth templates, styrene–butadiene rubber macromolecules are controllably cross‐linked, and size‐controllable holes on the carbon shells are generated. The as‐formed carbon microcages encapsulating Si nanoparticles exhibit enhanced lithium‐storage performances for lithium‐ion batteries. The scalable, inexpensive synthesis of porous carbon microcages with controlled porosity and the demonstration of outstanding electrochemical properties are expected to extend their uses in energy storage, molecular sieves, catalysis, adsorbents, water/air filters, and biomedical engineering.
    View less >
    Journal Title
    Angewandte Chemie: International Edition
    Volume
    56
    Issue
    44
    Publisher URI
    https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201708732
    Subject
    Chemical Sciences
    Science & Technology
    Physical Sciences
    Chemistry, Multidisciplinary
    Chemistry
    carbon cages
    Publication URI
    http://hdl.handle.net/10072/400849
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander