• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Modeling drug transport within the viable skin - a review

    Author(s)
    Calcutt, JJ
    Roberts, MS
    Anissimov, YG
    Griffith University Author(s)
    Anissimov, Yuri G.
    Calcutt, Joshua J.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    In the past, mathematical modeling of the transport of transdermal drugs has been primarily focused on the stratum corneum. However, the development of pharmaceutical technologies, such as chemical enhancers, iontophoresis, and microneedles, has led to two outcomes; an increase in permeability in the stratum corneum or the ability to negate the layer entirely. As a result, these outcomes have made the transport of a solute in the viable skin far more critical when studying transdermal drug delivery.In the past, mathematical modeling of the transport of transdermal drugs has been primarily focused on the stratum corneum. However, the development of pharmaceutical technologies, such as chemical enhancers, iontophoresis, and microneedles, has led to two outcomes; an increase in permeability in the stratum corneum or the ability to negate the layer entirely. As a result, these outcomes have made the transport of a solute in the viable skin far more critical when studying transdermal drug delivery.
    View less >
    Journal Title
    Expert Opinion on Drug Metabolism and Toxicology
    Volume
    17
    Issue
    1
    DOI
    https://doi.org/10.1080/17425255.2020.1832081
    Subject
    Pharmacology and pharmaceutical sciences
    Transport
    capillary
    diffusion
    microneedle
    modeling
    Publication URI
    http://hdl.handle.net/10072/400861
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander