• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An adaptive and robust online method to predict gait events

    Thumbnail
    View/Open
    Shirota426180-Published.pdf (228.7Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Schrade, SO
    Bader, Y
    Tucker, MR
    Shirota, C
    Gassert, R
    Griffith University Author(s)
    Shirota, Camila
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Accurate timing of interventions during the gait cycle are critical for optimal efficacy of assistive devices, e.g., to reduce the metabolic cost of walking. However, timing control generally relies on methods that can neither account for changes in the stride duration over time due to different walking speeds, nor reject isolated abnormal strides, which could be caused by stumbling or obstacle avoidance for example. In order to address these issues, a method, named the Gait Phase Estimator (GPE), is proposed to predict temporal gait events and stride duration. Predictions are based on the weighted forward moving-average of ...
    View more >
    Accurate timing of interventions during the gait cycle are critical for optimal efficacy of assistive devices, e.g., to reduce the metabolic cost of walking. However, timing control generally relies on methods that can neither account for changes in the stride duration over time due to different walking speeds, nor reject isolated abnormal strides, which could be caused by stumbling or obstacle avoidance for example. In order to address these issues, a method, named the Gait Phase Estimator (GPE), is proposed to predict temporal gait events and stride duration. Predictions are based on the weighted forward moving-average of stride duration. Prediction performance in steady-state walking, robustness to stride disturbances, and adaptation to speed changes were evaluated in an experiment with three subjects walking on a treadmill at three different speeds. Results suggest that, on average, the GPE produces better predictions than a predefined estimate. On top, it automatically adapts to changes in speed, while offering the benefit of robustness to irregular strides unlike a conventional moving-average. Thus, the proposed GPE has the potential to improve and greatly simplify the process of obtaining stride duration estimates, which could benefit gait-assistive devices and experimental protocols.
    View less >
    Conference Title
    Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
    DOI
    https://doi.org/10.1109/EMBC.2016.7592163
    Copyright Statement
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Rehabilitation Engineering
    Science & Technology
    Engineering, Biomedical
    Engineering, Electrical & Electronic
    Engineering
    Publication URI
    http://hdl.handle.net/10072/401067
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander