• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Trip recovery strategies following perturbations of variable duration

    Author(s)
    Shirota, Camila
    Simon, Ann M
    Kuiken, Todd A
    Griffith University Author(s)
    Shirota, Camila
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Appropriately responding to mechanical perturbations during gait is critical to maintain balance and avoid falls. Tripping perturbation onset during swing phase is strongly related to the use of different recovery strategies; however, it is insufficient to fully explain how strategies are chosen. The dynamic interactions between the foot and the obstacle may further explain observed recovery strategies but the relationship between such contextual elements and strategy selection has not been explored. In this study, we investigated whether perturbation onset, duration and side could explain strategy selection for all of swing ...
    View more >
    Appropriately responding to mechanical perturbations during gait is critical to maintain balance and avoid falls. Tripping perturbation onset during swing phase is strongly related to the use of different recovery strategies; however, it is insufficient to fully explain how strategies are chosen. The dynamic interactions between the foot and the obstacle may further explain observed recovery strategies but the relationship between such contextual elements and strategy selection has not been explored. In this study, we investigated whether perturbation onset, duration and side could explain strategy selection for all of swing phase. We hypothesized that perturbations of longer duration would elicit lowering and delayed-lowering strategies earlier in swing phase than shorter perturbations. We developed a custom device to trip subjects multiple times while they walked on a treadmill. Seven young, healthy subjects were tripped on the left or right side at 10% to 80% of swing phase for 150. ms, 250. ms or 350. ms. Strategies were characterized by foot motion post-perturbation and identified by an automated algorithm. A multinomial logistic model was used to investigate the effect of perturbation onset, side, and the interaction between duration and onset on recovery strategy selection. Side perturbed did not affect strategy selection. Perturbation duration interacted with onset, limiting the use of elevating strategies to earlier in swing phase with longer perturbations. The choice between delayed-lowering and lowering strategies was not affected by perturbation duration. Although these variables did not fully explain strategy selection, they improved the prediction of strategy used in response to tripping perturbations throughout swing phase. © 2014 Elsevier Ltd.
    View less >
    Journal Title
    Journal of Biomechanics
    Volume
    47
    Issue
    11
    DOI
    https://doi.org/10.1016/j.jbiomech.2014.05.009
    Subject
    Biomedical engineering
    Mechanical engineering
    Sports science and exercise
    Science & Technology
    Life Sciences & Biomedicine
    Biophysics
    Publication URI
    http://hdl.handle.net/10072/401071
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander