Parametric study on buckling stability of CFRP-strengthened cylindrical shells subjected to uniform external pressure

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Taraghi, Pouya
Zirakian, Tadeh
Karampour, Hassan
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
Stability performance of cylindrical shells and providing a potential method to enhance the buckling stability of these structures are major concerns for designers. Carbon Fiber Reinforced Polymer (CFRP) composites are promising materials for application in the design and retrofit of such thin-walled structures. On this basis, this paper presents a comprehensive numerical study on the buckling behavior of CFRP-strengthened cylindrical shells under uniform external pressure and evaluates the effects of different parameters in the strengthening process. Numerous CFRP-strengthened cylindrical shells with distinct reinforcement ...
View more >Stability performance of cylindrical shells and providing a potential method to enhance the buckling stability of these structures are major concerns for designers. Carbon Fiber Reinforced Polymer (CFRP) composites are promising materials for application in the design and retrofit of such thin-walled structures. On this basis, this paper presents a comprehensive numerical study on the buckling behavior of CFRP-strengthened cylindrical shells under uniform external pressure and evaluates the effects of different parameters in the strengthening process. Numerous CFRP-strengthened cylindrical shells with distinct reinforcement layouts in three groups of models having different slenderness ratios are investigated through nonlinear stability analyses using the ABAQUS finite element package. The application of all considered reinforcement layouts for strengthening purposes is found to be effective in improving the buckling stability of cylindrical shells. It is demonstrated that the circumferential reinforcement of the middle region of the shell using CFRP strips with [0°] fiber angle (in the hoop direction), in particular, is the most effective approach for improving the buckling performance of the CFRP-strengthened cylindrical shells under uniform external pressure.
View less >
View more >Stability performance of cylindrical shells and providing a potential method to enhance the buckling stability of these structures are major concerns for designers. Carbon Fiber Reinforced Polymer (CFRP) composites are promising materials for application in the design and retrofit of such thin-walled structures. On this basis, this paper presents a comprehensive numerical study on the buckling behavior of CFRP-strengthened cylindrical shells under uniform external pressure and evaluates the effects of different parameters in the strengthening process. Numerous CFRP-strengthened cylindrical shells with distinct reinforcement layouts in three groups of models having different slenderness ratios are investigated through nonlinear stability analyses using the ABAQUS finite element package. The application of all considered reinforcement layouts for strengthening purposes is found to be effective in improving the buckling stability of cylindrical shells. It is demonstrated that the circumferential reinforcement of the middle region of the shell using CFRP strips with [0°] fiber angle (in the hoop direction), in particular, is the most effective approach for improving the buckling performance of the CFRP-strengthened cylindrical shells under uniform external pressure.
View less >
Journal Title
Thin-Walled Structures
Volume
161
Copyright Statement
© 2021 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Ocean engineering