• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Preparing for an Australian Football League Women's League Season

    Thumbnail
    View/Open
    Minahan457783-Published.pdf (1.596Mb)
    Author(s)
    Thornton, Heidi Rose
    Armstrong, Cameron R
    Rigby, Alex
    Minahan, Clare L
    Johnston, Rich D
    Duthie, Grant Malcolm
    Griffith University Author(s)
    Minahan, Clare L.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    The aims were to investigate the externally measured weekly loads, and the distribution intensity relative to the 1-min maximal mean (MM) intensity of matches. Athletes (n = 28) wore 10 Hz GNSS devices during training and matches. For the descriptive analysis, a range of movement variables were collected, including total distance, high-speed distance, very high-speed distance, acceleration, and acceleration load. Using raw GNSS files, 1-min moving averages were calculated for speed (m·min-1) and acceleration (m·s-2), and were multiplied by time, specifying total distance (m), and by body mass to quantify impulse (kN·s-1). ...
    View more >
    The aims were to investigate the externally measured weekly loads, and the distribution intensity relative to the 1-min maximal mean (MM) intensity of matches. Athletes (n = 28) wore 10 Hz GNSS devices during training and matches. For the descriptive analysis, a range of movement variables were collected, including total distance, high-speed distance, very high-speed distance, acceleration, and acceleration load. Using raw GNSS files, 1-min moving averages were calculated for speed (m·min-1) and acceleration (m·s-2), and were multiplied by time, specifying total distance (m), and by body mass to quantify impulse (kN·s-1). The distribution of distance and impulse accumulated at varied intensities relative to MMs was calculated, with percentages ranging from zero to 110%. Drills were categorized as either; warm-ups, skill drills, games (i.e., small-sided games), conditioning and matches. Linear mixed models determined if the distribution of intensity within each threshold (>50%) varied between drill types and matches, and if the distribution within drill types varied across the season. Effects were described using standardized effect sizes (ES) and 90% confidence limits (CL). Compared to matches, a higher proportion of distance was accumulated at 50% of the MM within warm-ups and conditioning (ES range 0.86-1.14). During matches a higher proportion of distance was accumulated at 60% of MM when compared to warms ups, skill drills and conditioning (0.73-1.87). Similarly, greater proportion of distance was accumulated between 70 and 100% MM in matches compared to skill drills and warm-ups (1.05-3.93). For impulse, matches had a higher proportion between 60 and 80% of the MM compared to conditioning drills (0.91-3.23). There were no other substantial differences in the proportion of impulse between matches and drill types. When comparing phases, during competition there was a higher proportion of distance accumulated at 50% MM than general preparation (1.08). A higher proportion of distance was covered at higher intensities within matches compared to drills. The proportion of impulse was higher between 60 and 80% MM within matches compared to conditioning. Practitioners can therefore ensure athletes are not only exposed to the intensities common within competition, but also the volume accumulated is comparable, which may have positive performance outcomes, but is also extremely important in the return to play process.
    View less >
    Journal Title
    Frontiers in Sports and Active Living
    Volume
    2
    DOI
    https://doi.org/10.3389/fspor.2020.608939
    Copyright Statement
    © 2020 Thornton, Armstrong, Rigby, Minahan, Johnston and Duthie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
    Subject
    Sociology
    Cultural Studies
    GPS
    acceleration
    intensity
    speed
    team sport
    Publication URI
    http://hdl.handle.net/10072/401102
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander