• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Design and Implementation of Trans-Z-Source Inverter-Fed Induction Motor Drive with Fault-Tolerant Capability

    Author(s)
    Sharma, V
    Hossain, MJ
    Ali, SMN
    Kashif, M
    Fernandez, E
    Griffith University Author(s)
    Hossain, Jahangir
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    The traditional Z-source inverter suffers from large voltage stress across the switches, and discontinuous source current, which is not appropriate for the electric motor drives applications. This paper presents a design and thorough analysis of a trans-Z-source (transformer-based Z-source) with higher boost capability and negligible leakage inductance which overcomes the drawbacks of traditional Z-source inverters (ZSI). Additionally, the fault-tolerant capability of the proposed trans-ZSI is investigated for open-circuit and short-circuit faults occurring in the power semiconductor switches of the inverter module. It ...
    View more >
    The traditional Z-source inverter suffers from large voltage stress across the switches, and discontinuous source current, which is not appropriate for the electric motor drives applications. This paper presents a design and thorough analysis of a trans-Z-source (transformer-based Z-source) with higher boost capability and negligible leakage inductance which overcomes the drawbacks of traditional Z-source inverters (ZSI). Additionally, the fault-tolerant capability of the proposed trans-ZSI is investigated for open-circuit and short-circuit faults occurring in the power semiconductor switches of the inverter module. It proposes a highly efficient faulty leg identification method which is independent of the temperature rise occurring due to high current in the faulty mode. The proposed fault-tolerant scheme is characterized by low cost, fast fault diagnosis irrespective of load, and maintaining post-fault speed characteristics of motor identical to pre-fault characteristics. The experimental results are presented to validate the effectiveness of the proposed method for induction motor drives. Also, a comparative study with similar fault diagnosis strategies is tabulated to validate the potential of the proposed fault-tolerant strategy.
    View less >
    Conference Title
    Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC
    DOI
    https://doi.org/10.1109/APEC39645.2020.9124323
    Subject
    Hybrid Vehicles and Powertrains
    Publication URI
    http://hdl.handle.net/10072/401109
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander