• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Multi-agent system based residential electric vehicle management system for grid-support service

    Author(s)
    Nizami, MSH
    Hossain, MJ
    Rafique, S
    Mahmud, K
    Irshad, UB
    Town, G
    Griffith University Author(s)
    Hossain, Jahangir
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    With a spike in popularity and sales, the electric vehicles (EVs) have revolutionized the transportation industry. As EV technology advances, the EVs are becoming more accessible and affordable. Therefore, a rapid proliferation of light-duty EVs have been noticed in the residential sector. Even though the increased charging demand of EVs is manageable in large-scale, the low-voltage (LV) residential networks might not be capable of managing localized capacity issues of large scale EV integration. Dynamic electricity tariff coupled with demand response and smart charging management can provide grid assistance to some extent. ...
    View more >
    With a spike in popularity and sales, the electric vehicles (EVs) have revolutionized the transportation industry. As EV technology advances, the EVs are becoming more accessible and affordable. Therefore, a rapid proliferation of light-duty EVs have been noticed in the residential sector. Even though the increased charging demand of EVs is manageable in large-scale, the low-voltage (LV) residential networks might not be capable of managing localized capacity issues of large scale EV integration. Dynamic electricity tariff coupled with demand response and smart charging management can provide grid assistance to some extent. However, uncoordinated charging, if clustered in a residential distribution feeder, can risk grid assets because of overloading and can even jeopardize the reliability of the network by violating voltage constraints. This paper proposes a coordinated residential EV management system for power grid support. Charging and discharging of residential EV batteries are coordinated and optimized to address grid overloading during peak demand periods and voltage constraint violations. The EV management for grid support is formulated as a mixed-integer programming based optimization problem to minimize the inconveniences of EV owner while providing grid assistance. The proposed methodology is evaluated via a case study based on a residential feeder in Sydney, Australia with actual load demand data. The simulation results indicate the efficacy of the proposed EV management method for mitigating grid overloading and maintaining desired bus voltages.
    View less >
    Conference Title
    Proceedings - 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2019
    DOI
    https://doi.org/10.1109/EEEIC.2019.8783799
    Subject
    Electrical engineering
    Electronics, sensors and digital hardware
    Publication URI
    http://hdl.handle.net/10072/401124
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander