• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Optimal Dispatch of Electrical Vehicle and PV Power to Improve the Power Quality of an Unbalanced Distribution Grid

    Author(s)
    Islam, Md Rabiul
    Lu, Haiyan
    Fang, Gengfa
    Li, Li
    Hossain, Md Jahangir
    Griffith University Author(s)
    Hossain, Jahangir
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    In the smart grid, the distributed generations play an important role to manage the distribution grid. The renewable energy sources such as PV solar, wind, etc. and the Electric Vehicle's Energy Storage are the prominent distributed generation sources. The distributed generation (DG) reduces power loss and improves the voltage profile and reliability of a low voltage (LV) distribution grid. However, optimal placement and sizing of DGs need to be planned properly. Several researchers planned to place single or multiple DGs at the optimum node with an optimal amount of power dispatch assuming balanced distribution grid. But ...
    View more >
    In the smart grid, the distributed generations play an important role to manage the distribution grid. The renewable energy sources such as PV solar, wind, etc. and the Electric Vehicle's Energy Storage are the prominent distributed generation sources. The distributed generation (DG) reduces power loss and improves the voltage profile and reliability of a low voltage (LV) distribution grid. However, optimal placement and sizing of DGs need to be planned properly. Several researchers planned to place single or multiple DGs at the optimum node with an optimal amount of power dispatch assuming balanced distribution grid. But the DGs are connected at all node/buses which require an optimum amount of power dispatch and distribution grids are seldom balance. Moreover, a few research have been conducted for optimizing DG dispatch in an unbalanced distribution grid. This paper proposes a method to improve voltage profile and reduce the total power loss by optimizing the PV and EVs power dispatch in an unbalanced distribution grid. This study will solve the optimization problem using the Differential evolution (DE) optimization algorithm and compares the performance with the Genetic algorithm (GA). Finally, the efficacy of the proposed method is evaluated by applying to an Australian distribution grid. The proposed method reduces 55.72% real power loss of the network. It is also found that the proposed method improves the bus voltage up to 7.65% and increase the bus voltage above 0.95 p.u at all the nodes.
    View less >
    Conference Title
    2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS 2019)
    DOI
    https://doi.org/10.1109/HPBDIS.2019.8735488
    Subject
    Electrical and Electronic Engineering
    Science & Technology
    Computer Science, Artificial Intelligence
    Computer Science, Information Systems
    Computer Science, Theory & Methods
    Publication URI
    http://hdl.handle.net/10072/401128
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander