• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Acceleration of genetic algorithm on GPU CUDA platform

    Author(s)
    Janssen, DM
    Liew, AWC
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Janssen, Dylan M.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    When a deterministic search approach is too costly, such as for non-deterministic polynomial-hard problems, finding near-optimal solutions with approximation algorithms, such as the genetic algorithm, is the only practical approach to reduce the execution time. In this paper, we exploit the capability of graphics processing units (GPU), specifically Nvidia's CUDA platform, to accelerate the genetic algorithm by modifying the evolutionary operations to fit the hardware architecture. This has allowed us to achieve significant computational speedups compared to the non-GPU counterparts.When a deterministic search approach is too costly, such as for non-deterministic polynomial-hard problems, finding near-optimal solutions with approximation algorithms, such as the genetic algorithm, is the only practical approach to reduce the execution time. In this paper, we exploit the capability of graphics processing units (GPU), specifically Nvidia's CUDA platform, to accelerate the genetic algorithm by modifying the evolutionary operations to fit the hardware architecture. This has allowed us to achieve significant computational speedups compared to the non-GPU counterparts.
    View less >
    Conference Title
    Proceedings - 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies, PDCAT 2019
    DOI
    https://doi.org/10.1109/PDCAT46702.2019.00047
    Subject
    Artificial Intelligence and Image Processing
    Distributed Computing
    Publication URI
    http://hdl.handle.net/10072/401138
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander