• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Saprophytic fungal communities change in diversity and species composition across a volcanic soil chronosequence at Sierra del Chichinautzin, Mexico

    Thumbnail
    View/Open
    70872_1.pdf (186.4Kb)
    Author(s)
    Reverchon, Frederique
    del Ortega-Larrocea, Pilar Maria
    Perez-Moreno, Jesus
    Griffith University Author(s)
    Reverchon, Frederique
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Saprophytic fungi are one of the most active decomposers of forest litter, and their diversity may be influenced by the spatial heterogeneity of substrates. We examined the changes in saprophytic community structure and composition across a volcanic soil chronosequence, at Sierra del Chichinautzin, Mexico. Saprophytic fungi were collected for three consecutive years at three sampling sites with contrasting soil properties in a volcanic soil chronosequence ranging from 1,835 years B.P. to 10,000 years B.P. Although no significant differences were found in terms of abundance and richness between the three sites, Shannon diversity ...
    View more >
    Saprophytic fungi are one of the most active decomposers of forest litter, and their diversity may be influenced by the spatial heterogeneity of substrates. We examined the changes in saprophytic community structure and composition across a volcanic soil chronosequence, at Sierra del Chichinautzin, Mexico. Saprophytic fungi were collected for three consecutive years at three sampling sites with contrasting soil properties in a volcanic soil chronosequence ranging from 1,835 years B.P. to 10,000 years B.P. Although no significant differences were found in terms of abundance and richness between the three sites, Shannon diversity was higher at the youngest, less-fertile site. The high percentage of site-exclusive species showed that species composition was strongly dependent on the site and therefore on soil parameters. Different saprophytic species had divergent responses to soil variables, but most fungal taxa correlated negatively with the edaphic factors we measured. The highest diversity found at the young, less fertile site may represent an "insurance" mechanism against harsh conditions, since different species are likely to play various ecological functions which may lead to a more efficient degradation of recalcitrant substrates.
    View less >
    Journal Title
    Annals of Microbiology
    Volume
    60
    Issue
    2
    DOI
    https://doi.org/10.1007/s13213-010-0030-7
    Copyright Statement
    © 2010 Springer Berlin / Heidelberg This is an electronic version of an article published in Annals of Surgical Oncology [Volume, Issue, Pages, Year]. The original publication is available at www.springerlink.com
    Subject
    Community ecology (excl. invasive species ecology)
    Microbiology
    Publication URI
    http://hdl.handle.net/10072/40135
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander