• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Hyperspectral Anomaly Detection via Deep Plug-and-Play Denoising CNN Regularization

    Author(s)
    Fu, Xiyou
    Jia, Sen
    Zhuang, Lina
    Xu, Meng
    Zhou, Jun
    Li, Qingquan
    Griffith University Author(s)
    Zhou, Jun
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Due to the importance in many military and civilian applications, hyperspectral anomaly detection has attracted remarkable interest. Low-rank representation (LRR)-based anomaly detectors use the low-rank property to represent background pixels, and pixels that cannot be well represented are detected as anomalies. The ability of an LRR-based detector to separate background pixels and anomalous pixels depends on the dictionary representation ability, which usually can be enhanced by designing a proper prior for dictionary representation coefficients and constructing a better dictionary. However, it is not easy to handcraft ...
    View more >
    Due to the importance in many military and civilian applications, hyperspectral anomaly detection has attracted remarkable interest. Low-rank representation (LRR)-based anomaly detectors use the low-rank property to represent background pixels, and pixels that cannot be well represented are detected as anomalies. The ability of an LRR-based detector to separate background pixels and anomalous pixels depends on the dictionary representation ability, which usually can be enhanced by designing a proper prior for dictionary representation coefficients and constructing a better dictionary. However, it is not easy to handcraft effective and meaningful regularizers for dictionary coefficients. In this article, we propose a novel anomaly detection algorithm that uses a plug-and-play prior for representation coefficients and constructs a new dictionary based on clustering. Instead of cumbersomely handcrafting a regularizer for representation coefficients, we propose solving the anomaly detection problem using the plug-and-play framework, which enables us to plug state-of-the-art priors for representation coefficients. An effective convolutional neural network (CNN) denoiser is plugged into our framework to fully exploit the spatial correlation of representation coefficients. We also propose a modified background dictionary construction method, which carefully includes background pixels and excludes anomalous pixels from clustering results. We refer to the proposed anomaly detection method as plug-and-play denoising CNN regularized anomaly detection (DeCNN-AD) method. Extensive experiments were performed on five data sets in a comparison with eight state-of-the-art anomaly detection methods. The experimental results suggest that the proposed method is effective in anomaly detection and can produce better anomaly detection results than that of the comparison methods. The codes of this work will be available at https://github.com/FxyPd for the sake of reproducibility.
    View less >
    Journal Title
    IEEE Transactions on Geoscience and Remote Sensing
    DOI
    https://doi.org/10.1109/tgrs.2021.3049224
    Note
    This publication has been entered as an advanced online version in Griffith Research Online.
    Subject
    Geophysics
    Geomatic engineering
    Publication URI
    http://hdl.handle.net/10072/401477
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander