• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Progressive gradient walk for neural network fitness landscape analysis

    Author(s)
    Bosman, Anna S
    Engelbrecht, Andries P
    Helbig, Mardé
    Griffith University Author(s)
    Helbig, Mardé
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Understanding the properties of neural network error landscapes is an important problem faced by the neural network research community. A few attempts have been made in the past to gather insight about neural network error landscapes using fitness landscape analysis techniques. However, most fitness landscape metrics rely on the analysis of random samples, which may not represent the high-dimensional neural network search spaces well. If the random samples do not include areas of good fitness, then the presence of local optima and/or saddle points cannot be quantified. This paper proposes a progressive gradient walk as an ...
    View more >
    Understanding the properties of neural network error landscapes is an important problem faced by the neural network research community. A few attempts have been made in the past to gather insight about neural network error landscapes using fitness landscape analysis techniques. However, most fitness landscape metrics rely on the analysis of random samples, which may not represent the high-dimensional neural network search spaces well. If the random samples do not include areas of good fitness, then the presence of local optima and/or saddle points cannot be quantified. This paper proposes a progressive gradient walk as an alternative sampling algorithm for neural network error landscape analysis. Experiments show that the proposed walk captures areas of good fitness significantly better than the random walks.
    View less >
    Conference Title
    GECCO' 18 Companion: Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion
    DOI
    https://doi.org/10.1145/3205651.3208247
    Subject
    Neural networks
    Publication URI
    http://hdl.handle.net/10072/401554
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander