• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Answering real world questions using real world data: Understanding dynamic treatment decisions and outcomes in metastatic colorectal cancer (mCRC).

    Author(s)
    Wong, Hui-Li
    Degeling, Koen
    Jalali, Azim
    Shapiro, Jeremy David
    Kosmider, Suzanne
    Wong, Rachel
    Lee, Belinda
    Burge, Matthew E
    Tie, Jeanne
    Yip, Desmond
    Nott, Louise M
    Khattak, Muhammad Adnan
    Lim, Stephanie Hui-Su
    Caird, Susan
    et al.
    Griffith University Author(s)
    Caird, Susan
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Background: The wide range of possible combinations and sequences available for mCRC treatment presents a major challenge to clinicians, who need to determine the optimal approach for an individual patient or patient subset. In the absence of clinical trial evidence, real world data are an increasingly valuable resource that can be utilized not only to understand treatment patterns and outcomes in routine practice, but also to define an optimal treatment strategy for individual patients across multiple lines of therapy. Methods: Real world data from an Australian mCRC registry were used to develop an interactive data ...
    View more >
    Background: The wide range of possible combinations and sequences available for mCRC treatment presents a major challenge to clinicians, who need to determine the optimal approach for an individual patient or patient subset. In the absence of clinical trial evidence, real world data are an increasingly valuable resource that can be utilized not only to understand treatment patterns and outcomes in routine practice, but also to define an optimal treatment strategy for individual patients across multiple lines of therapy. Methods: Real world data from an Australian mCRC registry were used to develop an interactive data visualization tool that displays treatment variation, customizable to different levels of detail and specific patient subsets, based on patient and disease characteristics. Next, a discrete event simulation model was developed to predict progression-free (PFS) and overall survival (OS) for first line palliative treatment with doublet chemotherapy alone or with bevacizumab, based on data of 867 patients that were treated accordingly. Results: Of 2694 Australian patients enrolled, 2057 (76%) started 1st line treatment with chemotherapy and/or a biologic agent, 1087 (40%) and 428 (16%) received 2nd and 3rd line therapy, respectively. Combined, these 3 lines of treatment accounted for 733 unique sequences. After recoding treatment to the most intensive chemotherapy and the first exposed biologic, 472 unique sequences remained. In exploratory analyses, the simulation model estimated that median 1st line PFS (95% CI) of 219 (25%) patients could be improved from 175 (156, 199) to 269 days (247, 293) by targeting a different treatment. Conclusions: This was an initial exploration of the potential for data visualization and simulation modeling to inform understanding of practice in mCRC and to guide clinical decision making. Such tools allow clinicians and health system providers to define variation in practice patterns and to identify opportunities to improve care and outcomes. Ultimately, the aim is to improve the delivery of personalized cancer care, where other applications such as conditional survival and cost-effectiveness analyses may be useful.
    View less >
    Conference Title
    Journal of Clinical Oncology
    Volume
    37
    Issue
    15
    DOI
    https://doi.org/10.1200/JCO.2019.37.15_suppl.e18061
    Subject
    Clinical sciences
    Oncology and carcinogenesis
    Science & Technology
    Life Sciences & Biomedicine
    Publication URI
    http://hdl.handle.net/10072/401563
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander