• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An effective biochar-based slow-release fertilizer for reducing nitrogen loss in paddy fields

    Author(s)
    Dong, Da
    Wang, Cheng
    Van Zwieten, Lukas
    Wang, Hailong
    Jiang, Peikun
    Zhou, Minmin
    Wu, Weixiang
    Griffith University Author(s)
    Van Zwieten, Lukas
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Purpose As a carbon sequestration material, biochar has attracted much attention due to its potential to enhance rice productivity and nitrogen retention in paddy fields. However, little information is available about the impacts of rice straw-derived biochar on coating materials of slow-release fertilizers especially with bentonite, starch, and humic acid. Materials and methods In this study, a biochar-based slow-release fertilizer was developed and evaluated at field scale. An orthogonal experimental design was applied to investigate the blending ratios of biochar, humic acid, and bentonite with three adhesives, and how ...
    View more >
    Purpose As a carbon sequestration material, biochar has attracted much attention due to its potential to enhance rice productivity and nitrogen retention in paddy fields. However, little information is available about the impacts of rice straw-derived biochar on coating materials of slow-release fertilizers especially with bentonite, starch, and humic acid. Materials and methods In this study, a biochar-based slow-release fertilizer was developed and evaluated at field scale. An orthogonal experimental design was applied to investigate the blending ratios of biochar, humic acid, and bentonite with three adhesives, and how these influenced N release. Results and discussion The optimum coating combination was 25% biochar, 4% bentonite, and 10% humic acid with modified cornstarch as the adhesive (herein referred to as CF10). The product not only decreased N leaching and runoff losses at the seeding and tillering stages but also supplied more nutrients to the rice at the heading and maturing stages. The SEM and FT-IR observations revealed that an effective dense layer was formed that slowed N release from the granule. Conclusions Laboratory- and field-scale studies showed that biochar has played a crucial role in developing a slow-release coating for the compound fertilizer based on its structural properties, porosity, and chemical interaction with other coating ingredients. We conclude that biochar-based slow-release fertilizer is a promising alternative N fertilizer for rice production.
    View less >
    Conference Title
    Journal of Soils and Sediments
    Volume
    20
    Issue
    8
    DOI
    https://doi.org/10.1007/s11368-019-02401-8
    Subject
    Earth sciences
    Environmental sciences
    Agricultural, veterinary and food sciences
    Soil sciences
    Science & Technology
    Life Sciences & Biomedicine
    Soil Science
    Ecology
    Publication URI
    http://hdl.handle.net/10072/401603
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander