• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Compact multi-party confidential transactions

    Author(s)
    Alupotha, J
    Boyen, X
    Foo, E
    Griffith University Author(s)
    Foo, Ernest
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    “Confidential Transactions”, integrated transactions of commitments, signatures, and zero-knowledge range proofs, are favored for their ability to hide transaction amounts. In the real world, multi-party fund transfers are highly desirable for personal and business security. Unfortunately, existing unproven Multi-Party Confidential Transactions are linear in the (exact) number of co-owners; hence they are not compact, very scalable, nor private (leak number of users and their public information). In this study, we provide provably secure private, compact Multi-Party Confidential Transactions, in both the “unanimous” N-out-of-N ...
    View more >
    “Confidential Transactions”, integrated transactions of commitments, signatures, and zero-knowledge range proofs, are favored for their ability to hide transaction amounts. In the real world, multi-party fund transfers are highly desirable for personal and business security. Unfortunately, existing unproven Multi-Party Confidential Transactions are linear in the (exact) number of co-owners; hence they are not compact, very scalable, nor private (leak number of users and their public information). In this study, we provide provably secure private, compact Multi-Party Confidential Transactions, in both the “unanimous” N-out-of-N and “threshold” T-out-of-N settings. Unlike other schemes, our multi-party transactions have the size of single-owner transactions and hide the number of participants. To the best of our knowledge, ours is the first proven secure multi-party and threshold confidential transaction protocol.
    View less >
    Conference Title
    Lecture Notes in Computer Science
    Volume
    12579
    DOI
    https://doi.org/10.1007/978-3-030-65411-5_21
    Subject
    Information and computing sciences
    Publication URI
    http://hdl.handle.net/10072/401681
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander