• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Assessment of radar-based locally varying anisotropy on daily rainfall interpolation

    View/Open
    Gyasi-Agyei447400-Accepted.pdf (1.843Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Gyasi-Agyei, Yeboah
    Griffith University Author(s)
    Gyasi-Agyei, Yeboah
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Spatial variability of rainfall has been recognised as an important factor controlling the hydrological response of catchments. However, gauged daily rainfall data are often available at scattered locations over the catchments. This paper looks into how to capitalise on the spatial structure of radar rainfall data for improving kriging interpolation of limited gauge data over catchments at the 1-km2 grid scale, using for the case study 117 gauged stations within the 128 km × 128 km region of the Mt Stapylton weather radar field (near Brisbane, Australia). Correlograms were developed using a Fast Fourier Transform method on ...
    View more >
    Spatial variability of rainfall has been recognised as an important factor controlling the hydrological response of catchments. However, gauged daily rainfall data are often available at scattered locations over the catchments. This paper looks into how to capitalise on the spatial structure of radar rainfall data for improving kriging interpolation of limited gauge data over catchments at the 1-km2 grid scale, using for the case study 117 gauged stations within the 128 km × 128 km region of the Mt Stapylton weather radar field (near Brisbane, Australia). Correlograms were developed using a Fast Fourier Transform method on the Gaussianised radar and gauged data. It is observed that the correlograms vary from day to day and display significant anisotropy. For the radar data, locally varying anisotropy (LVA) was examined by developing the correlogram centred on each pixel and for different radial distances. Cross-validation was carried out using the empirical correlogram tables, as well as different fitting strategies of a two-dimensional exponential distribution for both the gauged and the radar data. The results indicate that the correlograms based on the radar data outperform the gauged ones as judged by statistical measures including root mean square error, mean bias, mean absolute bias, mean standard deviation and mean inter-quartile range. While the radar data display significant LVA, it was observed that LVA did not significantly improve the estimates compared with the global anisotropy. This was also confirmed by conditional simulation of 120 rainfields using different options of correlogram development.
    View less >
    Journal Title
    Hydrological Sciences Journal
    Volume
    61
    Issue
    10
    DOI
    https://doi.org/10.1080/02626667.2015.1083652
    Copyright Statement
    This is an Author's Accepted Manuscript of an article published in the Hydrological Sciences Journal, 61 (10), pp. 1890-1902, 05 May 2016, copyright Taylor & Francis, available online at: https://doi.org/10.1080/02626667.2015.1083652
    Subject
    Physical Geography and Environmental Geoscience
    Civil Engineering
    Environmental Engineering
    Science & Technology
    Physical Sciences
    Water Resources
    spatial rainfall
    radar
    Publication URI
    http://hdl.handle.net/10072/401735
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander