Ionic JET flow in a circulatory miniaturized system
Author(s)
Dang, LB
Dinh, TX
Bui, TT
Duc, TC
Phan, HT
Dau, VT
Griffith University Author(s)
Year published
2017
Metadata
Show full item recordAbstract
This paper reports a novel device for generating circulatory jet flow using bipolar discharge configuration. This arrangement, in which two electrodes serve as mutual emitters and reference defining the electric field, allows to generate simultaneously ionic wind with opposite charge, thus the ion flow is self-neutralized while keeping the momentum in desired direction. In order to prevent system from sparking over, between the two parallel electrodes is installed one millimetre thick polypropylene wall. Experiment and simulation has shown that the air flow is successfully circulated in the confined device with peak velocity ...
View more >This paper reports a novel device for generating circulatory jet flow using bipolar discharge configuration. This arrangement, in which two electrodes serve as mutual emitters and reference defining the electric field, allows to generate simultaneously ionic wind with opposite charge, thus the ion flow is self-neutralized while keeping the momentum in desired direction. In order to prevent system from sparking over, between the two parallel electrodes is installed one millimetre thick polypropylene wall. Experiment and simulation has shown that the air flow is successfully circulated in the confined device with peak velocity of 2 m/s while consuming only 33 mW.
View less >
View more >This paper reports a novel device for generating circulatory jet flow using bipolar discharge configuration. This arrangement, in which two electrodes serve as mutual emitters and reference defining the electric field, allows to generate simultaneously ionic wind with opposite charge, thus the ion flow is self-neutralized while keeping the momentum in desired direction. In order to prevent system from sparking over, between the two parallel electrodes is installed one millimetre thick polypropylene wall. Experiment and simulation has shown that the air flow is successfully circulated in the confined device with peak velocity of 2 m/s while consuming only 33 mW.
View less >
Conference Title
TRANSDUCERS 2017 - 19th International Conference on Solid-State Sensors, Actuators and Microsystems
Subject
Mechanical engineering
Science & Technology
Engineering, Electrical & Electronic
Engineering
Circulatory jet flow