• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Ionic JET flow in a circulatory miniaturized system

    Author(s)
    Dang, LB
    Dinh, TX
    Bui, TT
    Duc, TC
    Phan, HT
    Dau, VT
    Griffith University Author(s)
    Dau, Van
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    This paper reports a novel device for generating circulatory jet flow using bipolar discharge configuration. This arrangement, in which two electrodes serve as mutual emitters and reference defining the electric field, allows to generate simultaneously ionic wind with opposite charge, thus the ion flow is self-neutralized while keeping the momentum in desired direction. In order to prevent system from sparking over, between the two parallel electrodes is installed one millimetre thick polypropylene wall. Experiment and simulation has shown that the air flow is successfully circulated in the confined device with peak velocity ...
    View more >
    This paper reports a novel device for generating circulatory jet flow using bipolar discharge configuration. This arrangement, in which two electrodes serve as mutual emitters and reference defining the electric field, allows to generate simultaneously ionic wind with opposite charge, thus the ion flow is self-neutralized while keeping the momentum in desired direction. In order to prevent system from sparking over, between the two parallel electrodes is installed one millimetre thick polypropylene wall. Experiment and simulation has shown that the air flow is successfully circulated in the confined device with peak velocity of 2 m/s while consuming only 33 mW.
    View less >
    Conference Title
    TRANSDUCERS 2017 - 19th International Conference on Solid-State Sensors, Actuators and Microsystems
    DOI
    https://doi.org/10.1109/TRANSDUCERS.2017.7994488
    Subject
    Mechanical engineering
    Science & Technology
    Engineering, Electrical & Electronic
    Engineering
    Circulatory jet flow
    Publication URI
    http://hdl.handle.net/10072/401766
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander