• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Ultrathin nickel phosphide nanosheet aerogel electrocatalysts derived from Ni-alginate for hydrogen evolution reaction

    Author(s)
    Lai, Shoujuan
    Lv, Chunxiao
    Chen, Shuai
    Lu, Ping
    She, Xilin
    Wan, Li
    Wang, Hongwei
    Sun, Jin
    Yang, Dongjiang
    Zhao, Xiaoliang
    Griffith University Author(s)
    Yang, Dongjiang
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Transition metal phosphides (TMPs) have been regarded as an alternative to Pt-based catalysts for hydrogen evolution reaction (HER) on account of their high performance and low cost. The ultrathin two-dimensional (2D) nanosheets of TMPs can expose abundant active sites and facilitate the transfer of mass/charge to enhance HER performance. However, the synthesis of ultrathin 2D nanosheets of TMPs is still a great challenge. Herein, we reported a novel and scalable strategy to prepare 2D ultrathin nickel phosphide nanosheets (∼2.5 nm) by using alginate as precursor through ice-templating process. The role of ice-templating is ...
    View more >
    Transition metal phosphides (TMPs) have been regarded as an alternative to Pt-based catalysts for hydrogen evolution reaction (HER) on account of their high performance and low cost. The ultrathin two-dimensional (2D) nanosheets of TMPs can expose abundant active sites and facilitate the transfer of mass/charge to enhance HER performance. However, the synthesis of ultrathin 2D nanosheets of TMPs is still a great challenge. Herein, we reported a novel and scalable strategy to prepare 2D ultrathin nickel phosphide nanosheets (∼2.5 nm) by using alginate as precursor through ice-templating process. The role of ice-templating is that the growth of the ice crystals would squeeze Ni-alginate into 2D nanosheets, and then forming Ni-alginate aerogels. The three-dimensional (3D) interconnected porous network of aerogels was advantageous to reduce the lattice strains of subsequent oxidation and phosphorization process. It is the key step to prepare 2D ultrathin nickel phosphides (Ni2P and Ni5P4) nanosheets. As expected, all the prepared Ni5P4 nanosheet aerogels displayed remarkable HER performance in 1 M KOH electrolyte. Especially, due to their ultrathin 2D nanosheets and high P percentage, the Ni5P4-500-350 sample with excellent long-term stability exhibits a low overpotential of 147 mV at current density of 10 mA cm−2 and a low Tafel slope of 57 mV dec−1.
    View less >
    Journal Title
    Journal of Alloys and Compounds
    Volume
    817
    DOI
    https://doi.org/10.1016/j.jallcom.2019.152727
    Subject
    Condensed matter physics
    Materials engineering
    Resources engineering and extractive metallurgy
    Science & Technology
    Physical Sciences
    Chemistry, Physical
    Materials Science, Multidisciplinary
    Publication URI
    http://hdl.handle.net/10072/401838
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander