• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Controllable synthesis of CoN3 catalysts derived from Co/Zn-ZIF-67 for electrocatalytic oxygen reduction in acidic electrolytes

    Author(s)
    Lai, Shoujuan
    Xu, Li
    Liu, Hongli
    Chen, Shuai
    Cai, Rongsheng
    Zhang, Lijie
    Theis, Wolfgang
    Sun, Jin
    Yang, Dongjiang
    Zhao, Xiaoliang
    Griffith University Author(s)
    Yang, Dongjiang
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Metal nitrides have attracted significant attention due to their noble metal-like electron features; however, their applications are still limited by numerous predicaments in their synthesis owing to their large bond enthalpy and high ionization potential, which is generally implemented under extra-high pressure and temperature. Herein, the controllable synthesis of CoN3 nanoparticles embedded in graphite carbon was successfully achieved through the in situ pyrolysis of a Co/Zn-ZIF-67 (ZIF, zeolitic imidazolate framework) precursor (Co/Zn molar ratio ranging from 5/95 to 9/91 in Zn-ZIF-67 crystals). During the pyrolysis, the ...
    View more >
    Metal nitrides have attracted significant attention due to their noble metal-like electron features; however, their applications are still limited by numerous predicaments in their synthesis owing to their large bond enthalpy and high ionization potential, which is generally implemented under extra-high pressure and temperature. Herein, the controllable synthesis of CoN3 nanoparticles embedded in graphite carbon was successfully achieved through the in situ pyrolysis of a Co/Zn-ZIF-67 (ZIF, zeolitic imidazolate framework) precursor (Co/Zn molar ratio ranging from 5/95 to 9/91 in Zn-ZIF-67 crystals). During the pyrolysis, the Co/Zn-ZIF-67 precursor was first converted into Co nanoparticles (NPs) embedded in N-doped porous carbon (Co@NC), accompanied by the release of NH3 from the decomposition of the ZIF structure. The abundant micropores formed by the evaporation of Zn and large surface area of Co@NC facilitate the contact between NH3 molecules and Co, generating CoN3 species. Importantly, when the CoN3@NC-7-1000 sample was evaluated as an electrocatalyst for the oxygen reduction reaction (ORR), it exhibited high performance with a positive half-wave potential (0.72 V vs. RHE) and a high current density (5.40 mA cm-2) in the 0.5 M H2SO4 electrolyte. According to the density functional theory (DFT) calculation, the exposed (220) facet of CoN3 with a low energy barrier can benefit the adsorption of O2 molecules.
    View less >
    Journal Title
    Journal of Materials Chemistry A
    Volume
    7
    Issue
    38
    DOI
    https://doi.org/10.1039/c9ta08134h
    Subject
    Macromolecular and Materials Chemistry
    Materials Engineering
    Interdisciplinary Engineering
    Science & Technology
    Physical Sciences
    Chemistry, Physical
    Energy & Fuels
    Publication URI
    http://hdl.handle.net/10072/401839
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander