• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Numerical study on seafloor liquefaction around a trenched pipeline in random sea conditions

    Author(s)
    Liang, Zuodong
    Jeng, Dong-Sheng
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    In this paper, unlike most previous investigations have been limited to the purely wave conditions or combined wave and current condition, a numerical model for random wave-induced seabed response around a pipeline in a trenched layer is established. Based on Longuet-Higgins random wave theory and finite volume method. The seabed is treated as a poro-elastic medium and characterized by Biots consolidation equations (QS model). The B-M spectrum is considered in the new model for the simulation of random waves. Numerical examples demonstrate the significant influence of irregularity of random waves on the wave-induced pore-water ...
    View more >
    In this paper, unlike most previous investigations have been limited to the purely wave conditions or combined wave and current condition, a numerical model for random wave-induced seabed response around a pipeline in a trenched layer is established. Based on Longuet-Higgins random wave theory and finite volume method. The seabed is treated as a poro-elastic medium and characterized by Biots consolidation equations (QS model). The B-M spectrum is considered in the new model for the simulation of random waves. Numerical examples demonstrate the significant influence of irregularity of random waves on the wave-induced pore-water pressures and the resultant seabed liquefaction around the trenched pipeline, which is different from the cases under the regular waves or waves plus ocean current loading.
    View less >
    Conference Title
    14th ISOPE Pacific/Asia Offshore Mechanics Symposium, PACOMS 2020
    Publisher URI
    https://onepetro.org/ISOPEPACOMS/proceedings-abstract/PACOMS20/All-PACOMS20/ISOPE-P-20-164/449407
    Subject
    Ocean engineering
    Publication URI
    http://hdl.handle.net/10072/401885
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander