• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Bimetal−organic frameworks from in situ-activated NiFe foam for highly efficient water splitting

    Author(s)
    Zhang, Y
    Zhou, Y
    Chen, W
    Zhu, X
    Ostrikov, KK
    Griffith University Author(s)
    Ostrikov, Ken
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Nickel–iron foam (NFF) has high air permeability and a high specific surface area because of its connected pore structure and high porosity, making it an ideal catalyst support material. However, it is challenging to effectively utilize metal ions in the NFF to prepare new advanced electrocatalysts without introduction of metal species. Here, we demonstrate that activated metal ions in NiFe foam serve as the support and metal sources for in situ synthesis of NiFe bimetal–organic frameworks (NFF-MOF). Specifically, by further acidification to activate NiFe metal ions on the NFF backbone, and then to generate active NFF-MOF ...
    View more >
    Nickel–iron foam (NFF) has high air permeability and a high specific surface area because of its connected pore structure and high porosity, making it an ideal catalyst support material. However, it is challenging to effectively utilize metal ions in the NFF to prepare new advanced electrocatalysts without introduction of metal species. Here, we demonstrate that activated metal ions in NiFe foam serve as the support and metal sources for in situ synthesis of NiFe bimetal–organic frameworks (NFF-MOF). Specifically, by further acidification to activate NiFe metal ions on the NFF backbone, and then to generate active NFF-MOF species through the participation of the organic ligand, the resulting NFF-MOF material exhibits significantly improved electrocatalytic performance toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) with ultralow overpotentials of 81 and 250 mV at a current density of 10 mA cm–2, respectively. Density functional theory calculations and experimental results suggest that the NFF-MOF from the in situ-activated NiFe foam promotes transport and separation of charge because of highly uniform dispersed metal sites, high porosity, and an ordered 3D skeleton structure, thus accelerating the electrochemical HER and OER. This work brings new insights for the development of next-generation high-efficiency electrocatalysts.
    View less >
    Journal Title
    ACS Sustainable Chemistry and Engineering
    Volume
    9
    Issue
    4
    DOI
    https://doi.org/10.1021/acssuschemeng.0c08147
    Subject
    Environmental engineering
    Analytical chemistry
    Chemical engineering
    Publication URI
    http://hdl.handle.net/10072/401975
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander