• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • First hafnium-based MAX phase in the 312 family, Hf3AlC2: A first-principles study

    Thumbnail
    View/Open
    Ostrikov201514-Accepted.pdf (664.8Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Roknuzzaman, M
    Hadi, MA
    Ali, MA
    Hossain, MM
    Jahan, N
    Uddin, MM
    Alarco, JA
    Ostrikov, K
    Griffith University Author(s)
    Ostrikov, Ken
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    The ground state physical properties of the newly synthesized 312 MAX compound, Hf3AlC2 have been investigated using the first-principles density functional theory (DFT). The optimized unit cell parameters show good agreement with the experimental values. The calculated elastic constants and phonon dispersion confirm the mechanical and dynamical stabilities of this new compound. High bulk modulus, combined with low shear resistance and low Vickers hardness, indicates good machinability of Hf3AlC2, as expected for a metallic compound. On the other hand, significant stiffness due to large Young's modulus as well as the brittle ...
    View more >
    The ground state physical properties of the newly synthesized 312 MAX compound, Hf3AlC2 have been investigated using the first-principles density functional theory (DFT). The optimized unit cell parameters show good agreement with the experimental values. The calculated elastic constants and phonon dispersion confirm the mechanical and dynamical stabilities of this new compound. High bulk modulus, combined with low shear resistance and low Vickers hardness, indicates good machinability of Hf3AlC2, as expected for a metallic compound. On the other hand, significant stiffness due to large Young's modulus as well as the brittle nature according to the calculated Pugh's and Poison's ratios and Cauchy pressure are comparable to that of a ceramic. The present calculations show that Hf3AlC2 is elastically and optically anisotropic. The chemical bonding in Hf3AlC2 consists of a mixture of metallic, covalent and ionic contributions. The calculated Fermi surface contains quasi-two-dimensional topology, which indicates possible superconductivity of Hf3AlC2. The new phase Hf3AlC2 may also be a promising thermal barrier coating (TBC) material. The calculated enthalpy and entropy are found to increase with temperature above 100 K though a decrease is observed for the free energy.
    View less >
    Journal Title
    Journal of Alloys and Compounds
    Volume
    727
    DOI
    https://doi.org/10.1016/j.jallcom.2017.08.151
    Copyright Statement
    © 2017 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Condensed matter physics
    Materials engineering
    Resources engineering and extractive metallurgy
    Science & Technology
    Physical Sciences
    Chemistry, Physical
    Materials Science, Multidisciplinary
    Publication URI
    http://hdl.handle.net/10072/401979
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander