• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Carbon nanoflake-nanoparticle interface: A comparative study on structure and photoluminescent properties of carbon nanoflakes synthesized on nanostructured gold and carbon by hot filament CVD

    Thumbnail
    View/Open
    Ostrikov201512-Accepted.pdf (1.116Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Wang, BB
    Qu, XL
    Zhu, MK
    Levchenko, I
    Keidar, M
    Zhong, XX
    Xu, S
    Ostrikov, K
    Griffith University Author(s)
    Ostrikov, Ken
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Three dimensional vertically-oriented carbon nanoflakes grown on carbon and gold nanoparticles by the hot filament chemical vapor deposition in CH4 environment demonstrate quite similar structure and composition, but drastically different room temperature photoluminescent properties. The interfacial interactions were asserted to be the main reason for the differences in the optical emission. The mechanisms of highly oriented growth, generation and enhancement of photoluminescence were investigated, and it was demonstrated that the formation of oriented nanoflakes resulted from the stress produced in the carbon layers on ...
    View more >
    Three dimensional vertically-oriented carbon nanoflakes grown on carbon and gold nanoparticles by the hot filament chemical vapor deposition in CH4 environment demonstrate quite similar structure and composition, but drastically different room temperature photoluminescent properties. The interfacial interactions were asserted to be the main reason for the differences in the optical emission. The mechanisms of highly oriented growth, generation and enhancement of photoluminescence were investigated, and it was demonstrated that the formation of oriented nanoflakes resulted from the stress produced in the carbon layers on carbon and gold nanoparticles. Specifically, deformation of nanoparticles and difference in the expansion rates of carbon layer, gold and carbon nanoparticles are the main causes for the stress formation. The oriented growth of carbon nanoflakes is maintained by the repulsion effect between the carbon nanoflakes due to the net charge produced from the hydrocarbon radicals on the edges of carbon nanoflakes via charge transfer between H and C atoms. The photoluminescence generation of carbon nanoflakes is related to the sp2 carbon clusters on the edges of carbon nanoflakes. Stronger green photoluminescent emission from the carbon nanoflake/gold nanoparticle system than from the carbon nanoflake/carbon nanoparticle system is the result of the intense plasmon emission from gold nanoparticles.
    View less >
    Journal Title
    Carbon
    Volume
    124
    DOI
    https://doi.org/10.1016/j.carbon.2017.08.078
    Copyright Statement
    © 2017 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Physical sciences
    Chemical sciences
    Engineering
    Science & Technology
    Chemistry, Physical
    Materials Science, Multidisciplinary
    Publication URI
    http://hdl.handle.net/10072/401980
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander