Show simple item record

dc.contributor.authorGhosh, Subrata
dc.contributor.authorPolaki, Shyamal R
dc.contributor.authorKumar, Niranjan
dc.contributor.authorAmirthapandian, Sankarakumar
dc.contributor.authorKamruddin, Mohamed
dc.contributor.authorOstrikov, Kostya Ken
dc.date.accessioned2021-02-11T03:41:04Z
dc.date.available2021-02-11T03:41:04Z
dc.date.issued2017
dc.identifier.issn2190-4286
dc.identifier.doi10.3762/bjnano.8.166
dc.identifier.urihttp://hdl.handle.net/10072/401984
dc.description.abstractApplications of plasma-produced vertically oriented graphene nanosheets (VGNs) rely on their unique structure and morphology, which can be tuned by the process parameters to understand the growth mechanism. Here, we report on the effect of the key process parameters such as deposition temperature, discharge power and distance from plasma source to substrate on the catalyst-free growth of VGNs in microwave plasmas. A direct evidence for the initiation of vertical growth through nanoscale graphitic islands is obtained from the temperature-dependent growth rates where the activation energy is found to be as low as 0.57 eV. It is shown that the growth rate and the structural quality of the films could be enhanced by (a) increasing the substrate temperature, (b) decreasing the distance between the microwave plasma source and the substrate, and (c) increasing the discharge power. The correlation between the wetting characteristics, morphology and structural quality is established. It is also demonstrated that morphology, crystallinity, wettability and sheet resistance of the VGNs can be varied while maintaining the same sp3 content in the film. The effects of the substrate temperature and the electric field in vertical alignment of the graphene sheets are reported. These findings help to develop and optimize the process conditions to produce VGNs tailored for applications including sensing, field emission, catalysis and energy storage.
dc.description.peerreviewedYes
dc.languageEnglish
dc.publisherBeilstein-Institut
dc.relation.ispartofpagefrom1658
dc.relation.ispartofpageto1670
dc.relation.ispartofissue1
dc.relation.ispartofjournalBeilstein Journal of Nanotechnology
dc.relation.ispartofvolume8
dc.subject.fieldofresearchAnalytical chemistry
dc.subject.fieldofresearchOther chemical sciences
dc.subject.fieldofresearchNanotechnology
dc.subject.fieldofresearchcode3401
dc.subject.fieldofresearchcode3499
dc.subject.fieldofresearchcode4018
dc.subject.keywordsScience & Technology
dc.subject.keywordsPhysical Sciences
dc.subject.keywordsMaterials Science, Multidisciplinary
dc.subject.keywordsNanoscience
dc.titleProcess-specific mechanisms of vertically oriented graphene growth in plasmas
dc.typeJournal article
dc.type.descriptionC1 - Articles
dcterms.bibliographicCitationGhosh, S; Polaki, SR; Kumar, N; Amirthapandian, S; Kamruddin, M; Ostrikov, KK, Process-specific mechanisms of vertically oriented graphene growth in plasmas, Beilstein Journal of Nanotechnology, 2017, 8 (1), pp. 1658-1670
dcterms.dateAccepted2017-07-25
dcterms.licensehttp://creativecommons.org/licenses/by/4.0/
dc.date.updated2021-02-11T03:37:26Z
dc.description.versionVersion of Record (VoR)
gro.rights.copyright© 2017 Ghosh et al.; licensee Beilstein-Institut. This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
gro.hasfulltextFull Text
gro.griffith.authorOstrikov, Ken


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record