Semi-resolved CFD-DEM modeling of gas-particle two-phase flow in the micro-abrasive air jet machining

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Zhu, G
Li, H
Wang, Z
Zhang, T
Liu, M
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
Abrasive air jet (AAJ) machining is attractive for micromachining hard and brittle materials, while it is usually a big challenge to numerically investigate the particle velocity and concentration distribution in the particle erosion process in the AAJ. In this work, a recently developed semi-resolved CFD-DEM approach which bridges the simulation gap between the resolved and unresolved CFD-DEM, is further improved to reconstruct the background information with a double cosine kernel function. The semi-resolved CFD-DEM is then employed to numerically investigate the gas-particle two-phase flow in the AAJ and numerical results ...
View more >Abrasive air jet (AAJ) machining is attractive for micromachining hard and brittle materials, while it is usually a big challenge to numerically investigate the particle velocity and concentration distribution in the particle erosion process in the AAJ. In this work, a recently developed semi-resolved CFD-DEM approach which bridges the simulation gap between the resolved and unresolved CFD-DEM, is further improved to reconstruct the background information with a double cosine kernel function. The semi-resolved CFD-DEM is then employed to numerically investigate the gas-particle two-phase flow in the AAJ and numerical results show that this semi-resolved CFD-DEM is more accurate in modeling particulate flow in the fine AAJ nozzle than the conventional unresolved CFD-DEM. We further conduct mechanism investigations on the AAJ micromachining process including particle flow characteristics inside the cylindrical nozzle, velocity, and concentration distribution over the nozzle exit, which are essential jet characteristic features. We identified the particle flow patterns, analyzed the particle distribution, and its correlation with air pressure, abrasive mass flow rate, and turbulence effects. The present simulation results and analyses can be great helpful in understanding the erosion mechanism and optimizing the setting parameters to improve the cutting performance of AAJ.
View less >
View more >Abrasive air jet (AAJ) machining is attractive for micromachining hard and brittle materials, while it is usually a big challenge to numerically investigate the particle velocity and concentration distribution in the particle erosion process in the AAJ. In this work, a recently developed semi-resolved CFD-DEM approach which bridges the simulation gap between the resolved and unresolved CFD-DEM, is further improved to reconstruct the background information with a double cosine kernel function. The semi-resolved CFD-DEM is then employed to numerically investigate the gas-particle two-phase flow in the AAJ and numerical results show that this semi-resolved CFD-DEM is more accurate in modeling particulate flow in the fine AAJ nozzle than the conventional unresolved CFD-DEM. We further conduct mechanism investigations on the AAJ micromachining process including particle flow characteristics inside the cylindrical nozzle, velocity, and concentration distribution over the nozzle exit, which are essential jet characteristic features. We identified the particle flow patterns, analyzed the particle distribution, and its correlation with air pressure, abrasive mass flow rate, and turbulence effects. The present simulation results and analyses can be great helpful in understanding the erosion mechanism and optimizing the setting parameters to improve the cutting performance of AAJ.
View less >
Journal Title
Powder Technology
Volume
381
Copyright Statement
© 2021 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Chemical engineering
Mechanical engineering
Resources engineering and extractive metallurgy