Show simple item record

dc.contributor.authorWang, Yuanlong
dc.contributor.authorDong, Daoyi
dc.contributor.authorSone, Akira
dc.contributor.authorPetersen, Ian R
dc.contributor.authorYonezawa, Hidehiro
dc.contributor.authorCappellaro, Paola
dc.date.accessioned2021-02-17T03:06:48Z
dc.date.available2021-02-17T03:06:48Z
dc.date.issued2020
dc.identifier.issn0018-9286en_US
dc.identifier.doi10.1109/TAC.2020.2973582en_US
dc.identifier.urihttp://hdl.handle.net/10072/402242
dc.description.abstractThe identifiability of a system is concerned with whether the unknown parameters in the system can be uniquely determined with all the possible data generated by a certain experimental setting. A test of quantum Hamiltonian identifiability is an important tool to save time and cost when exploring the identification capability of quantum probes and experimentally implementing quantum identification schemes. In this article, we generalize the identifiability test based on the similarity transformation approach (STA) in classical control theory and extend it to the domain of quantum Hamiltonian identification. We employ the STA to prove the identifiability of spin-1/2 chain systems with arbitrary dimension assisted by single-qubit probes. We further extend the traditional STA method by proposing a structure preserving transformation (SPT) method for nonminimal systems. We use the SPT method to introduce an indicator for the existence of economic quantum Hamiltonian identification algorithms, whose computational complexity directly depends on the number of unknown parameters (which could be much smaller than the system dimension). Finally, we give an example of such an economic Hamiltonian identification algorithm and perform simulations to demonstrate its effectiveness.en_US
dc.description.peerreviewedYesen_US
dc.languageEnglishen_US
dc.publisherIEEEen_US
dc.relation.ispartofpagefrom4632en_US
dc.relation.ispartofpageto4647en_US
dc.relation.ispartofissue11en_US
dc.relation.ispartofjournalIEEE Transactions on Automatic Controlen_US
dc.relation.ispartofvolume65en_US
dc.subject.fieldofresearchApplied Mathematicsen_US
dc.subject.fieldofresearchElectrical and Electronic Engineeringen_US
dc.subject.fieldofresearchMechanical Engineeringen_US
dc.subject.fieldofresearchcode0102en_US
dc.subject.fieldofresearchcode0906en_US
dc.subject.fieldofresearchcode0913en_US
dc.subject.keywordsScience & Technologyen_US
dc.subject.keywordsAutomation & Control Systemsen_US
dc.titleQuantum Hamiltonian Identifiability via a Similarity Transformation Approach and Beyonden_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Articlesen_US
dcterms.bibliographicCitationWang, Y; Dong, D; Sone, A; Petersen, IR; Yonezawa, H; Cappellaro, P, Quantum Hamiltonian Identifiability via a Similarity Transformation Approach and Beyond, IEEE Transactions on Automatic Control, 2020, 65 (11), pp. 4632-4647en_US
dcterms.licensehttp://creativecommons.org/licenses/by/4.0/en_US
dc.date.updated2021-02-17T03:04:30Z
dc.description.versionVersion of Record (VoR)en_US
gro.rights.copyright© The Author(s) 2020. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
gro.hasfulltextFull Text
gro.griffith.authorWang, Yuanlong


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record