• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Probing Secondary Structures of Self-cleaving Ribozymes by Deep Mutational Scanning

    Thumbnail
    View/Open
    Embargoed until: 2023-02-05
    Author(s)
    Zhang, Zhe
    Primary Supervisor
    Zhou, Yaoqi
    Other Supervisors
    Zhan, Jian
    Year published
    2021-02-05
    Metadata
    Show full item record
    Abstract
    Self-cleaving ribozymes are the smallest catalytic RNAs found in nature, and are believed to have played an important role in the origin of life. The evidence that these natural RNAs can catalyze site-specific scission of their phosphodiester backbone demonstrates that RNAs can also fold into intricate functionally specific structures. Despite the biological importance of ribozymes, their structural characterization remains challenging because of the difficulty to crystallize. Moreover, their sizes are often too large for NMR structure determination. This thesis seeks to infer the base-pairing information of self-cleaving ...
    View more >
    Self-cleaving ribozymes are the smallest catalytic RNAs found in nature, and are believed to have played an important role in the origin of life. The evidence that these natural RNAs can catalyze site-specific scission of their phosphodiester backbone demonstrates that RNAs can also fold into intricate functionally specific structures. Despite the biological importance of ribozymes, their structural characterization remains challenging because of the difficulty to crystallize. Moreover, their sizes are often too large for NMR structure determination. This thesis seeks to infer the base-pairing information of self-cleaving ribozymes by deep mutational scanning. Chapter 1 of this thesis gives an overview of self-cleaving ribozymes and current RNA structural biology techniques. In Chapters 2, 3 and 4, we performed a large-scale mutational analysis to gain structural information which is important for understanding the function of ribozymes. Generally, we constructed the mutant library of three ribozymes (CPEB3, LINE-1, OR4K15 ribozyme) from the human genome by error-prone PCR or using doped synthesis. These variants of ribozymes were assayed for their self-cleaving activity by exploiting deep sequencing for every randomized variant. A complete activity profile of each variant was acquired based on this large-scale mutational analysis. To better predict the structural information, we developed a method called covariation-induced deviation of activity (CODA). When in combination with Monte Carlo simulated annealing, it provides an accurate inference of noncanonical and all canonical Watson-Crick base pairs at 100% precision for two self-cleaving ribozymes studied (CPEB3 and twister ribozyme). By extending this method to two unknown ribozymes (LINE-1, OR4K15 ribozyme), we were able to identify the core elements and their secondary structure. According to the secondary structure information, we identified homologs of these ribozymes by using a secondary structure-based similarity search. In summary, our results show that combining deep mutational scanning and CODA analysis provides a highly accurate secondary-structure characterization of RNAs for the discovery of additional homologous sequences.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Institute for Glycomics
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Subject
    Self-cleaving ribozymes
    base-pairing
    deep mutational scanning
    Publication URI
    http://hdl.handle.net/10072/402262
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander