• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Design and characterization of a vibrating piezo-membrane deformable mirror for adaptive optics application

    Thumbnail
    View/Open
    Hadipour242043-Published.pdf (2.744Mb)
    Author(s)
    Hadipour, Mousa
    Tahtali, Murat
    Lambert, Andrew
    Griffith University Author(s)
    Hadipour, Mousa
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Recently, we proposed an inexpensive deformable mirror made of Poly-Vinylidene Fluoride-(PVDF), called Vibrating Membrane Mirror (VMM), to compensate for optical atmospheric aberrations [1, 2]. The degree of similarity between the vibration mode shapes of a circular membrane and Zernike polynomials were investigated and VMM was introduced as a promising alternative to the traditional deformable mirrors. The present work deals with technical concepts, design, and surface analysis of the proposed deformable mirror. The mode identification, dynamic range, and time response of the proposed mirror is discussed and important factors ...
    View more >
    Recently, we proposed an inexpensive deformable mirror made of Poly-Vinylidene Fluoride-(PVDF), called Vibrating Membrane Mirror (VMM), to compensate for optical atmospheric aberrations [1, 2]. The degree of similarity between the vibration mode shapes of a circular membrane and Zernike polynomials were investigated and VMM was introduced as a promising alternative to the traditional deformable mirrors. The present work deals with technical concepts, design, and surface analysis of the proposed deformable mirror. The mode identification, dynamic range, and time response of the proposed mirror is discussed and important factors that influence these parameters are investigated. To measure the mirror surface motion, a Laser Doppler vibrometer is used. Results show that the mechanical performance of the VMM satisfies the basic requirements of an optical deformable mirror. The mirror performance is optically examined in an interferometer setup and recommendations are provided to improve it.
    View less >
    Conference Title
    Environmental Effects on Light Propagation and Adaptive Systems
    Volume
    10787
    DOI
    https://doi.org/10.1117/12.2326527
    Copyright Statement
    © 2018 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
    Subject
    Mechanical Engineering
    Publication URI
    http://hdl.handle.net/10072/402279
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander