• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells

    Author(s)
    Wang, Zhongyang
    Parrondo, Javier
    He, Cheng
    Sankarasubramanian, Shrihari
    Ramani, Vijay
    Griffith University Author(s)
    He, Cheng
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    The disparate pH requirements for borohydride oxidation and peroxide reduction in direct borohydride fuel cells (DBFCs) currently hinder their performance and efficiency. Here we develop a pH-gradient-enabled microscale bipolar interface (PMBI) that facilitates sharply different local pH environments at the anode and cathode of a DBFC. Using a recessed planar electrode in conjunction with transmission electron microscopy, we show that the PMBI maintained a sharp local pH gradient (0.82 pH units nm–1 on average) at the electrocatalytic reaction site. The PMBI configuration enabled enhanced performance in a DBFC compared with ...
    View more >
    The disparate pH requirements for borohydride oxidation and peroxide reduction in direct borohydride fuel cells (DBFCs) currently hinder their performance and efficiency. Here we develop a pH-gradient-enabled microscale bipolar interface (PMBI) that facilitates sharply different local pH environments at the anode and cathode of a DBFC. Using a recessed planar electrode in conjunction with transmission electron microscopy, we show that the PMBI maintained a sharp local pH gradient (0.82 pH units nm–1 on average) at the electrocatalytic reaction site. The PMBI configuration enabled enhanced performance in a DBFC compared with either all-anion- or all-cation-exchange configurations (330 mA cm–2 at 1.5 V and a peak power density of 630 mW cm–2 at 1.0 V, respectively). The high power densities obtained at voltages well above 1.0 V—achieved by virtue of the effective separation of anolyte and catholyte locally at the electrocatalytically active sites by the PMBI—provide a pathway to reduce fuel cell stack size for autonomous propulsion applications.
    View less >
    Journal Title
    Nature Energy
    Volume
    4
    Issue
    4
    DOI
    https://doi.org/10.1038/s41560-019-0330-5
    Subject
    Electrical and Electronic Engineering
    Environmental Engineering
    Science & Technology
    Energy & Fuels
    Materials Science, Multidisciplinary
    Publication URI
    http://hdl.handle.net/10072/402560
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander