• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Persistence of atrazine and trifluralin in a clay loam soil undergoing different temperature and moisture conditions

    Author(s)
    Chowdhury, Imtiaz Faruk
    Rohan, Maheswaran
    Stodart, Benjamin J
    Chen, Chengrong
    Wu, Hanwen
    Doran, Gregory S
    Griffith University Author(s)
    Chen, Chengrong
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Dissipation kinetics of atrazine and trifluralin in a clay loam soil was investigated in a laboratory incubation experiment under different temperature and moisture conditions. The soil was spiked with diluted atrazine and trifluralin concentrations at 4.50 and 4.25 mg/kg soil, respectively, the moisture content adjusted to 40, 70, and 100% of field capacity (FC) and then incubated in three climatic chambers at 10, 20, and 30 °C. For each of the herbicides, soil samples were collected at 0, 7, 21, 42, 70, and 105 days and analysed by Gas Chromatography-Electron Capture Detector (GC-ECD). A stochastic gamma model was used to ...
    View more >
    Dissipation kinetics of atrazine and trifluralin in a clay loam soil was investigated in a laboratory incubation experiment under different temperature and moisture conditions. The soil was spiked with diluted atrazine and trifluralin concentrations at 4.50 and 4.25 mg/kg soil, respectively, the moisture content adjusted to 40, 70, and 100% of field capacity (FC) and then incubated in three climatic chambers at 10, 20, and 30 °C. For each of the herbicides, soil samples were collected at 0, 7, 21, 42, 70, and 105 days and analysed by Gas Chromatography-Electron Capture Detector (GC-ECD). A stochastic gamma model was used to model the dissipation of herbicides from the clay loam soil by incorporating environmental factors as covariates to determine half-life and days to complete dissipation. Results showed that temperature played a greater role on atrazine persistence than soil moisture; while the interaction effect of temperature and moisture was significant on the persistence of trifluralin over time. Atrazine dissipated more rapidly at 30 °C compared to 10 and 20 °C, with a half-life of 7.50 days and 326.23 days to reach complete dissipation. Rapid loss of trifluralin was observed at 70% moisture content when incubated at 30 °C, with a half-life of 5.80 days and 182.01 days to complete dissipation. It was observed that the half-life of both herbicides tended to double with every 10 °C decreases of temperature over the range tested. The model indicated that both atrazine and trifluralin have the potential to persist in clay loam soil for several years at temperature ≤20 °C; which could potentially affect following crops in rotation.
    View less >
    Journal Title
    Environmental Pollution
    Volume
    276
    DOI
    https://doi.org/10.1016/j.envpol.2021.116687
    Subject
    Environmental Science and Management
    Chemical Sciences
    Complete dissipation
    Half-life
    Persistence
    Residues
    Publication URI
    http://hdl.handle.net/10072/402652
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander