• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Lag synchronization of coupled time-delayed FitzHugh-Nagumo neural networks via feedback control

    Thumbnail
    View/Open
    Mannan463344Published.pdf (1.610Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Ibrahim, Malik Muhammad
    Kamran, Muhammad Ahmad
    Mannan, Malik Muhammad Naeem
    Jung, Il Hyo
    Kim, Sangil
    Griffith University Author(s)
    Mannan, Malik Muhammad Naeem
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Synchronization plays a significant role in information transfer and decision-making by neurons and brain neural networks. The development of control strategies for synchronizing a network of chaotic neurons with time delays, different direction-dependent coupling (unidirectional and bidirectional), and noise, particularly under external disturbances, is an essential and very challenging task. Researchers have extensively studied the synchronization mechanism of two coupled time-delayed neurons with bidirectional coupling and without incorporating the effect of noise, but not for time-delayed neural networks. To overcome ...
    View more >
    Synchronization plays a significant role in information transfer and decision-making by neurons and brain neural networks. The development of control strategies for synchronizing a network of chaotic neurons with time delays, different direction-dependent coupling (unidirectional and bidirectional), and noise, particularly under external disturbances, is an essential and very challenging task. Researchers have extensively studied the synchronization mechanism of two coupled time-delayed neurons with bidirectional coupling and without incorporating the effect of noise, but not for time-delayed neural networks. To overcome these limitations, this study investigates the synchronization problem in a network of coupled FitzHugh-Nagumo (FHN) neurons by incorporating time delays, different direction-dependent coupling (unidirectional and bidirectional), noise, and ionic and external disturbances in the mathematical models. More specifically, this study investigates the synchronization of time-delayed unidirectional and bidirectional ring-structured FHN neuronal systems with and without external noise. Different gap junctions and delay parameters are used to incorporate time-delay dynamics in both neuronal networks. We also investigate the influence of the time delays between connected neurons on synchronization conditions. Further, to ensure the synchronization of the time-delayed FHN neuronal networks, different adaptive control laws are proposed for both unidirectional and bidirectional neuronal networks. In addition, necessary and sufficient conditions to achieve synchronization are provided by employing the Lyapunov stability theory. The results of numerical simulations conducted for different-sized multiple networks of time-delayed FHN neurons verify the effectiveness of the proposed adaptive control schemes.
    View less >
    Journal Title
    Scientific Reports
    Volume
    11
    Issue
    1
    DOI
    https://doi.org/10.1038/s41598-021-82886-x
    Copyright Statement
    © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
    Subject
    Neurosciences
    Nanotechnology
    Publication URI
    http://hdl.handle.net/10072/402694
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander