• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Opposition-based Laplacian Equilibrium Optimizer with Application in Image Segmentation using Multilevel Thresholding

    File version
    Accepted Manuscript (AM)
    Author(s)
    Kumar Dinkar, Shail
    Deep, Kusum
    Mirjalili, Seyedali
    Thapliyal, Shivankur
    Griffith University Author(s)
    Mirjalili, Seyedali
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    This paper proposes a modified version of freshly developed Equilibrium Optimizer (EO) for segmentation of gray-scale images using multi-level thresholding. Laplace distribution based random walk is utilized to update the concentration of search agents around equilibrium candidates (best solution) towards to attain optimal position (equilibrium state) for achieving better diversification of search space. An Opposition based learning (OBL) mechanism is then applied with hybridization of the varying acceleration coefficient to the best solution for accelerating exploitation at a later phase of each iteration. The performance ...
    View more >
    This paper proposes a modified version of freshly developed Equilibrium Optimizer (EO) for segmentation of gray-scale images using multi-level thresholding. Laplace distribution based random walk is utilized to update the concentration of search agents around equilibrium candidates (best solution) towards to attain optimal position (equilibrium state) for achieving better diversification of search space. An Opposition based learning (OBL) mechanism is then applied with hybridization of the varying acceleration coefficient to the best solution for accelerating exploitation at a later phase of each iteration. The performance of proposed Opposition-based Laplacian Equilibrium Optimizer (OB-L-EO) is validated using test suites containing benchmark problems of wide varieties of complexities. Various analyses are conducted including Wilcoxon ranksum test for statistical significance, convergence curves and distance between solution before and after applying modification strategies. Finally, the proposed OB-L-EO is employed for image segmentation by utilizing Otsu’s interclass variance function to obtain optimum threshold values for image segmentation. The performance of the proposed algorithm is verified by determining mean value of interclass variance and peak signal to noise ratio (PSNR). The obtained results are then compared and analysed with other metaheuristics algorithms to show superiority of proposed OB-L-EO.
    View less >
    Journal Title
    Expert Systems with Applications
    DOI
    https://doi.org/10.1016/j.eswa.2021.114766
    Copyright Statement
    © 2021 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Mathematical Sciences
    Information and Computing Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/402740
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander