Optimal energy management for PV-integrated residential systems including energy storage system

View/ Open
File version
Version of Record (VoR)
Author(s)
Varzaneh, S Ghafouri
Raziabadi, A
Hosseinzadeh, Mohammad
Sanjari, Mohammad J
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
Economic profit is the main incentive for PV‐integrated residential prosumers, so energy management algorithms play a key role in these systems. The main priority of conventional rule‐based energy management systems (REMS) is to supply the demand. As a result, the total amount of energy sold to the distribution network, and consequently the user profit in such systems, is not considerable. This study proposes a smart energy management system (SEMS) for optimal energy management in a grid‐connected residential photovoltaic (PV) system, including battery as an energy storage unit. The proposed method, which is simulated by ...
View more >Economic profit is the main incentive for PV‐integrated residential prosumers, so energy management algorithms play a key role in these systems. The main priority of conventional rule‐based energy management systems (REMS) is to supply the demand. As a result, the total amount of energy sold to the distribution network, and consequently the user profit in such systems, is not considerable. This study proposes a smart energy management system (SEMS) for optimal energy management in a grid‐connected residential photovoltaic (PV) system, including battery as an energy storage unit. The proposed method, which is simulated by MATLAB, using real values for load and PV characteristics, will result in achieving an economic plan for battery operation based on a discretised state of charge of the battery. Experimental tests, carried out to verify the simulation results, demonstrate a noticeable increase in the prosumer benefits as well as the load profile correction compared to the classic energy management algorithms.
View less >
View more >Economic profit is the main incentive for PV‐integrated residential prosumers, so energy management algorithms play a key role in these systems. The main priority of conventional rule‐based energy management systems (REMS) is to supply the demand. As a result, the total amount of energy sold to the distribution network, and consequently the user profit in such systems, is not considerable. This study proposes a smart energy management system (SEMS) for optimal energy management in a grid‐connected residential photovoltaic (PV) system, including battery as an energy storage unit. The proposed method, which is simulated by MATLAB, using real values for load and PV characteristics, will result in achieving an economic plan for battery operation based on a discretised state of charge of the battery. Experimental tests, carried out to verify the simulation results, demonstrate a noticeable increase in the prosumer benefits as well as the load profile correction compared to the classic energy management algorithms.
View less >
Journal Title
IET Renewable Power Generation
Volume
15
Issue
1
Copyright Statement
© 2020 The Authors. IET Renewable Power Generation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Subject
Electrical engineering
Electronics, sensors and digital hardware
Science & Technology
Green & Sustainable Science & Technology
Energy & Fuels