Show simple item record

dc.contributor.authorZhang, Lufang
dc.contributor.authorNan, Haiyan
dc.contributor.authorZhang, Xiumei
dc.contributor.authorLiang, Qifeng
dc.contributor.authorDu, Aijun
dc.contributor.authorNi, Zhenhua
dc.contributor.authorGu, Xiaofeng
dc.contributor.authorOstrikov, Kostya Ken
dc.contributor.authorXiao, Shaoqing
dc.date.accessioned2021-03-05T04:56:14Z
dc.date.available2021-03-05T04:56:14Z
dc.date.issued2020
dc.identifier.issn2041-1723
dc.identifier.doi10.1038/s41467-020-19766-x
dc.identifier.urihttp://hdl.handle.net/10072/402872
dc.description.abstractTwo-dimensional (2D) atomic crystal superlattices integrate diverse 2D layered materials enabling adjustable electronic and optical properties. However, tunability of the interlayer gap and interactions remain challenging. Here we report a solution based on soft oxygen plasma intercalation. 2D atomic crystal molecular superlattices (ACMSs) are produced by intercalating O2+ ions into the interlayer space using the plasma electric field. Stable molecular oxygen layer is formed by van der Waals interactions with adjacent transition metal dichalcogenide (TMD) monolayers. The resulting interlayer gap expansion can effectively isolate TMD monolayers and impart exotic properties to homo-(MoS2[O2]x) and hetero-(MoS2[O2]x/WS2[O2]x) stacked ACMSs beyond typical capacities of monolayer TMDs, such as 100 times stronger photoluminescence and 100 times higher photocurrent. Our potentially universal approach to tune interlayer stacking and interactions in 2D ACMSs may lead to exotic superlattice properties intrinsic to monolayer materials such as direct bandgap pursued for future optoelectronics.
dc.description.peerreviewedYes
dc.languageEnglish
dc.publisherNature Publishing Group
dc.relation.ispartofpagefrom5960
dc.relation.ispartofissue1
dc.relation.ispartofjournalNature Communications
dc.relation.ispartofvolume11
dc.subject.fieldofresearchChemical sciences
dc.subject.fieldofresearchEngineering
dc.subject.fieldofresearchcode34
dc.subject.fieldofresearchcode40
dc.subject.keywordsScience & Technology
dc.subject.keywordsMultidisciplinary Sciences
dc.subject.keywordsScience & Technology - Other Topics
dc.subject.keywordsEPITAXIAL-GROWTH
dc.subject.keywordsLAYER MOS2
dc.title2D atomic crystal molecular superlattices by soft plasma intercalation
dc.typeJournal article
dc.type.descriptionC1 - Articles
dcterms.bibliographicCitationZhang, L; Nan, H; Zhang, X; Liang, Q; Du, A; Ni, Z; Gu, X; Ostrikov, KK; Xiao, S, 2D atomic crystal molecular superlattices by soft plasma intercalation, Nature Communications, 2020, 11 (1), pp. 5960
dcterms.dateAccepted2020-10-22
dcterms.licensehttp://creativecommons.org/licenses/by/4.0/
dc.date.updated2021-03-05T04:51:13Z
dc.description.versionVersion of Record (VoR)
gro.rights.copyright© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
gro.hasfulltextFull Text
gro.griffith.authorOstrikov, Ken


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record