• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Accurate estimation of log MOE from non-destructive standing tree measurements

    Author(s)
    Kumar, Chandan
    Psaltis, Steven
    Bailleres, Henri
    Turner, Ian
    Brancheriau, Loic
    Hopewell, Gary
    Carr, Elliot J
    Farrell, Troy
    Lee, David J
    Griffith University Author(s)
    Bailleres, Henri
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    • Key message A novel non-destructive method has been developed to predict modulus of elasticity (MOE) of logs using measurements taken from cores extracted from discs. The trees were felled and cut into logs to allow validation of our method; however, similar results would be obtained if the cores were extracted from standing trees. The method shows that a single core from breast height is sufficient to predict MOE of logs, allowing early grading and sorting of logs for optimal use and processing. • Context Early estimation of log MOE allows efficient sorting and grading of logs which can improve the financial return ...
    View more >
    • Key message A novel non-destructive method has been developed to predict modulus of elasticity (MOE) of logs using measurements taken from cores extracted from discs. The trees were felled and cut into logs to allow validation of our method; however, similar results would be obtained if the cores were extracted from standing trees. The method shows that a single core from breast height is sufficient to predict MOE of logs, allowing early grading and sorting of logs for optimal use and processing. • Context Early estimation of log MOE allows efficient sorting and grading of logs which can improve the financial return and reduce wastage of wood. • Aims This work aims to predict the MOE of logs accurately from measurements taken on cores obtained from trees. • Methods The MOE of the logs was predicted using ultrasound measurements conducted on small segments obtained from cores using two different approaches: segment average and integral average. Sixty-eight trees from locally developed F1 and F2 hybrid pines (slash pine × Caribbean pine hybrids, Pinus elliottii var. elliottii × P. caribaea var. hondurensis (PEE × PCH cross)) were felled and cut into logs to validate the results. The Beam Identification by Non-destructive Grading (BING) method was used to measure a reference dynamic MOE (BING-MOE) for each log, and this was compared with the estimated log MOE. • Results Strong correlations (r=0.79 to 0.91) between measured log MOE and estimated log MOE were obtained. This study revealed that a single core from the breast height (1.3 m) of a tree allows a good prediction of the log MOE. Tree height, spacing, and diameter had no significant effect on the log MOE prediction. The segment average MOE under predicts the BING-MOE, whereas the integral average method provides very little bias in the prediction. Furthermore, the prediction errors from the regression analysis for all logs were greater in the segment average method compared with the integral average method. • Conclusion This paper presented a novel non-destructive evaluation method capable of predicting the MOE of the whole log by combining data available from a single breast-height core extracted from standing trees with our integral average MOE approach. The integral average method predicted the BING-MOE more accurately with lower bias compared with other existing tools without any complex equipment, analysis, and statistical calibration for segregating out individual trees or stands. The method can potentially be used to predict the log MOE of other tree species and extended to predict MOE of individual boards that can be sawn from a log.
    View less >
    Journal Title
    Annals of Forest Science
    Volume
    78
    Issue
    1
    DOI
    https://doi.org/10.1007/s13595-021-01031-w
    Subject
    Forestry Sciences
    Science & Technology
    Life Sciences & Biomedicine
    Forestry
    Log MOE
    Non-destructive
    Publication URI
    http://hdl.handle.net/10072/402914
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander