Self-Interaction-Corrected Random Phase Approximation

No Thumbnail Available
File version
Author(s)
Ruan, Shiqi
Ren, Xinguo
Gould, Tim
Ruzsinszky, Adrienn
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2021
Size
File type(s)
Location
License
Abstract

The short-range correlation energy of the random phase approximation (RPA) is too negative and is often corrected by local or nonlocal methods. These beyond-RPA corrections usually lead to a mixed performance for thermodynamics and dissociation properties. RPA+ is an additive correction based on density functional approximations that often gives realistic total energies for atoms or solids. RPA+ adds a moderate correction to the ionization energies/electron affinities of RPA but does not yield an improvement beyond RPA for atomization energies of molecules. This incompleteness results in severely underestimated atomization energies just like in RPA. Exchange-correlation kernels within the Dyson equation could simultaneously improve atomization, ionization energies, and electron affinities, but their implementation is computationally less feasible in localized basis set codes. In preceding work ( Phys. Rev. A 100, 2019022515), two of the authors proposed a computationally efficient generalized RPA+ (gRPA+) that changes RPA+ only for spin-polarized systems by making gRPA+ exact for all one-electron densities. gRPA+ was found to yield a large improvement of ionization energies and electron affinities of light atoms over RPA, and a smaller improvement over RPA+. Within this work, we investigate to what extent this improvement transfers to atomization energies, ionization energies, and electron affinities of molecules, using a modified gRPA+ (mgRPA+) method that can be applied in codes with localized basis functions. We thereby aim to understand the applicability of beyond-RPA corrections based on density functional approximations.

Journal Title
Journal of Chemical Theory and Computation
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
This publication has been entered in Griffith Research Online as an advanced online version.
Access the data
Related item(s)
Subject
Software engineering
Theoretical and computational chemistry
Persistent link to this record
Citation
Ruan, S; Ren, X; Gould, T; Ruzsinszky, A, Self-Interaction-Corrected Random Phase Approximation, Journal of Chemical Theory and Computation, 2021
Collections