• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection

    Author(s)
    Abdel-Basset, M
    Mohamed, R
    Chakrabortty, RK
    Ryan, MJ
    Mirjalili, S
    Griffith University Author(s)
    Mirjalili, Seyedali
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Feature selection refers to a process used to reduce the dimension of a dataset in order to obtain the optimal features subset for machine learning and data mining algorithms. This aids the achievement of higher classification accuracy in addition to reducing the training time of a learning algorithm as a result of the removal of redundant and less-informative features. In this paper, four binary versions of the slime mould algorithm (SMA) are proposed for feature selection, in which the standard SMA is incorporated with the most appropriate transfer function of eight V-Shaped and S-Shaped transfer functions. The first version ...
    View more >
    Feature selection refers to a process used to reduce the dimension of a dataset in order to obtain the optimal features subset for machine learning and data mining algorithms. This aids the achievement of higher classification accuracy in addition to reducing the training time of a learning algorithm as a result of the removal of redundant and less-informative features. In this paper, four binary versions of the slime mould algorithm (SMA) are proposed for feature selection, in which the standard SMA is incorporated with the most appropriate transfer function of eight V-Shaped and S-Shaped transfer functions. The first version converts the standard SMA, which has not been used yet for feature selection to the best of our knowledge, into a binary version (BSMA). The second, abbreviated as TMBSMA, integrates BSMA with two-phase mutation (TM) to further exploit better solutions around the best-so-far. The third version, abbreviated as AFBSMA, combines BSMA with a novel attacking-feeding strategy (AF) that trades off exploration and exploitation based on the memory saving of each particle. Finally, TM and AF are integrated with BSMA to produce better solutions, in a version called FMBSMA. The k-nearest neighbors (KNN) algorithm, one of the common classification and regression algorithms in machine learning, is used to measure the classification accuracy of the selected features. To validate the performance of the four proposed versions of BSMA, 28 well-known datasets are employed from the UCI repository. The experiments confirm the efficacy of the AF method in providing better results. Furthermore, after comparing the four versions, the FMBSMA version is shown to be the best compared with the other three versions and six state-of-art feature selection algorithms.
    View less >
    Journal Title
    Computers and Industrial Engineering
    Volume
    153
    DOI
    https://doi.org/10.1016/j.cie.2020.107078
    Subject
    Mathematical Sciences
    Information and Computing Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/403141
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander