• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Using Stochastic Modeling to Predict the Effect of Culling and Colony Dispersal of Bats on Zoonotic Viral Epidemics

    Author(s)
    Jeong, Jaewoon
    McCallum, Hamish
    Griffith University Author(s)
    McCallum, Hamish
    Jeong, Jaewoon
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Frequent outbreaks of emerging infectious diseases originating from wild animals have highlighted the necessity of managing wildlife populations to prevent zoonotic spillover, and the appropriate development of management protocols required attention on gaining a better understanding of viral dynamics in wild animal populations. In east Australia, there have been outbreaks of Hendra virus (HeV) infection in horses and humans following spillover from the virus's reservoir hosts, flying foxes (family Pteropodidae), and bat culling and colony dispersal have been proposed as appropriate management strategies. A key factor relating ...
    View more >
    Frequent outbreaks of emerging infectious diseases originating from wild animals have highlighted the necessity of managing wildlife populations to prevent zoonotic spillover, and the appropriate development of management protocols required attention on gaining a better understanding of viral dynamics in wild animal populations. In east Australia, there have been outbreaks of Hendra virus (HeV) infection in horses and humans following spillover from the virus's reservoir hosts, flying foxes (family Pteropodidae), and bat culling and colony dispersal have been proposed as appropriate management strategies. A key factor relating to flying fox population structure that influences HeV dynamics is that these bats form metapopulations, and consequently, to assess this factor, we designed an epidemic dynamics model of HeV transmission, focusing on bat metapopulation dynamics. Specifically, using flying fox movement data, we stochastically simulated models for a hypothetical metapopulation of flying foxes to examine the impact of metapopulation-related parameters, and subsequently simulated probable scenarios of culling and colony dispersal to estimate their effects on the probability of epidemic occurrence. Modeling of the hypothetical metapopulation revealed that a reduction in the number of large-sized colonies would lead to an increase in the probability of epidemic occurrence within the bat population, whereas the strong spatial coupling among colonies was found to dilute the effects of altering the number of colonies and the number of bats in each colony through culling or colony dispersal of bats on the probability that an epidemic within the bat population would occur. Culling and colony dispersal scenarios showed no significantly beneficial effect with respect to reducing the probability of an HeV epidemic occurring in flying foxes, and may indeed prove counterproductive. In conclusion, the modeling results indicate that bat culling and colony dispersal may not be an effective strategy to control HeV epidemics.
    View less >
    Journal Title
    Vector-Borne and Zoonotic Diseases
    DOI
    https://doi.org/10.1089/vbz.2020.2700
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Medical Microbiology
    Public Health and Health Services
    Hendra virus
    colony dispersal
    culling
    flying fox
    metapopulation
    Publication URI
    http://hdl.handle.net/10072/403157
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander