Heterogeneous Hypergraph Embedding for Graph Classification

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Sun, Xiangguo
Yin, Hongzhi
Liu, Bo
Chen, Hongxu
Cao, Jiuxin
Shao, Yingxia
Viet Hung, Nguyen Quoc
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
Recently, graph neural networks have been widely used for network embedding because of their prominent performance in pairwise relationship learning. In the real world, a more natural and common situation is the coexistence of pairwise relationships and complex non-pairwise relationships, which is, however, rarely studied. In light of this, we propose a graph neural network-based representation learning framework for heterogeneous hypergraphs, an extension of conventional graphs, which can well characterize multiple non-pairwise relations. Our framework first projects the heterogeneous hypergraph into a series of snapshots ...
View more >Recently, graph neural networks have been widely used for network embedding because of their prominent performance in pairwise relationship learning. In the real world, a more natural and common situation is the coexistence of pairwise relationships and complex non-pairwise relationships, which is, however, rarely studied. In light of this, we propose a graph neural network-based representation learning framework for heterogeneous hypergraphs, an extension of conventional graphs, which can well characterize multiple non-pairwise relations. Our framework first projects the heterogeneous hypergraph into a series of snapshots and then we take the Wavelet basis to perform localized hypergraph convolution. Since the Wavelet basis is usually much sparser than the Fourier basis, we develop an efficient polynomial approximation to the basis to replace the time-consuming Laplacian decomposition. Extensive evaluations have been conducted and the experimental results show the superiority of our method. In addition to the standard tasks of network embedding evaluation such as node classification, we also apply our method to the task of spammers detection and the superior performance of our framework shows that relationships beyond pairwise are also advantageous in the spammer detection. To make our experiment repeatable, source codes and related datasets are available at https://xiangguosun.mystrikingly.com
View less >
View more >Recently, graph neural networks have been widely used for network embedding because of their prominent performance in pairwise relationship learning. In the real world, a more natural and common situation is the coexistence of pairwise relationships and complex non-pairwise relationships, which is, however, rarely studied. In light of this, we propose a graph neural network-based representation learning framework for heterogeneous hypergraphs, an extension of conventional graphs, which can well characterize multiple non-pairwise relations. Our framework first projects the heterogeneous hypergraph into a series of snapshots and then we take the Wavelet basis to perform localized hypergraph convolution. Since the Wavelet basis is usually much sparser than the Fourier basis, we develop an efficient polynomial approximation to the basis to replace the time-consuming Laplacian decomposition. Extensive evaluations have been conducted and the experimental results show the superiority of our method. In addition to the standard tasks of network embedding evaluation such as node classification, we also apply our method to the task of spammers detection and the superior performance of our framework shows that relationships beyond pairwise are also advantageous in the spammer detection. To make our experiment repeatable, source codes and related datasets are available at https://xiangguosun.mystrikingly.com
View less >
Conference Title
Proceedings of the 14th ACM International Conference on Web Search and Data Mining
Copyright Statement
© ACM, 2021. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in WSDM '21: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, ISBN: 978-1-4503-8297-7, https://doi.org/10.1145/3437963.3441835
Subject
Artificial intelligence
cs.SI