• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Enhanced Marine Predators Algorithm for identifying static and dynamic Photovoltaic models parameters

    Thumbnail
    View/Open
    Hossain477979-Accepted.pdf (2.137Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Abd Elaziz, M
    Thanikanti, SB
    Ibrahim, IA
    Lu, S
    Nastasi, B
    Alotaibi, MA
    Hossain, MA
    Yousri, D
    Griffith University Author(s)
    Hossain, Md. Alamgir
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Providing an accurate and precise photovoltaic model is a vital stage prior to the system design, therefore, this paper proposes a novel algorithm, enhanced marine predators algorithm (EMPA), to identify the unknown parameters for different photovoltaic (PV) models including the static PV models (single-diode and double-diode) and dynamic PV model. In the proposed EMPA, the differential evolution operator (DE) is incorporated into the original marine predators algorithm (MPA) to achieve stable, and reliable performance while handling that nonlinear optimization problem of PV modeling. Three different real datasets are used ...
    View more >
    Providing an accurate and precise photovoltaic model is a vital stage prior to the system design, therefore, this paper proposes a novel algorithm, enhanced marine predators algorithm (EMPA), to identify the unknown parameters for different photovoltaic (PV) models including the static PV models (single-diode and double-diode) and dynamic PV model. In the proposed EMPA, the differential evolution operator (DE) is incorporated into the original marine predators algorithm (MPA) to achieve stable, and reliable performance while handling that nonlinear optimization problem of PV modeling. Three different real datasets are used to show the effectiveness of the proposed algorithm. In the first case study, the proposed algorithm is used to identify the unknown parameters of a single-diode and double-diode PV models. The root-mean-square error (RMSE) and standard deviation (STD) values for a single-diode are 7.7301e and 5.9135e . Similarly for double diode are 7.4396e and 3.1849e , respectively. In addition, the second case study is used to test the proposed model in identifying the unknown parameters of a double-diode PV model. Here, the proposed algorithm is compared with classical MPA in five scenarios at different operating conditions. In this case study, the RMSE and STD of the proposed algorithm are less than that obtained by the MPA algorithm. Moreover, the third case study is utilized to test the ability of the proposed model in identifying the parameters of a dynamic PV model. In this case study, the performance of the proposed algorithm is compared with the one obtained by MAP and heterogeneous comprehensive learning particle swarm optimization (HCLPSO) algorithms in terms of RMSE ± STD. The obtained value of RMSE ± STD by the proposed algorithm is 0.0084505±1.0971e-17, which is too small compared with that obtained by MPA and HCLPSO algorithms (0.0084505±9.6235e-14 and 0.0084505±2.5235e-9). The results show the proposed model's superiority over the MPA and other recent proposed algorithms in data fitting, convergence rate, stability, and consistency. Therefore, the proposed algorithm can be considered as a fast, feasible, and a reliable optimization algorithm to identify the unknown parameters in static and dynamic PV models. The code of the dynamic PV models is available via this link: https://github.com/DAyousri/Identifying-the-parameters-of-the-integer-and-fractional-order-dynamic-PV-models?_ga=2.104793926.732834951.1616028563-1268395487.1616028563. -04 -07 -04 -05
    View less >
    Journal Title
    Energy Conversion and Management
    Volume
    236
    DOI
    https://doi.org/10.1016/j.enconman.2021.113971
    Copyright Statement
    © 2021 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Electrical engineering
    Electronics, sensors and digital hardware
    Mechanical engineering
    Publication URI
    http://hdl.handle.net/10072/403674
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander