Rebooting kernel CCA method for nonlinear quality-relevant fault detection in process industries
Author(s)
Cheng, H
Liu, Y
Huang, D
Cai, B
Wang, Q
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
Process monitoring is essential and important strategy for ensuring process safety and product quality. However, due to the nonlinear characteristics and multiple working conditions in process industries, the traditional process monitoring method cannot be effectively applied. Therefore, we propose a novel process monitoring framework, termed as mixture enhanced kernel canonical correlation analysis framework (M-NAKCCA). The innovations and advantages of M-NAKCCA are as follows: 1). The traditional CCA method is re-boosted as a new method, M-NAKCCA, to better nonlinear fault detection. Also, a matter-element model (MEm) is ...
View more >Process monitoring is essential and important strategy for ensuring process safety and product quality. However, due to the nonlinear characteristics and multiple working conditions in process industries, the traditional process monitoring method cannot be effectively applied. Therefore, we propose a novel process monitoring framework, termed as mixture enhanced kernel canonical correlation analysis framework (M-NAKCCA). The innovations and advantages of M-NAKCCA are as follows: 1). The traditional CCA method is re-boosted as a new method, M-NAKCCA, to better nonlinear fault detection. Also, a matter-element model (MEm) is assimilated into M-NAKCCA to make the information more refined. 2). To overcome the curse of dimensionality that usually occurs in the high-dimensional dataset, M-NAKCCA uses the Nyström approximation technology to compress the kernel matrix. Moreover, the T control chart is reconstructed and the corresponding control upper limit is re-configured to improve the method sensitivity and to better the fault detection performance. 3). The proposed M-NAKCCA framework is firstly used to monitor a wastewater treatment plant (WWTP) and chemical plant with diverse process behaviors. The experimental results showed that the M-NAKCCA framework achieved the best performance for both of case studies. 2
View less >
View more >Process monitoring is essential and important strategy for ensuring process safety and product quality. However, due to the nonlinear characteristics and multiple working conditions in process industries, the traditional process monitoring method cannot be effectively applied. Therefore, we propose a novel process monitoring framework, termed as mixture enhanced kernel canonical correlation analysis framework (M-NAKCCA). The innovations and advantages of M-NAKCCA are as follows: 1). The traditional CCA method is re-boosted as a new method, M-NAKCCA, to better nonlinear fault detection. Also, a matter-element model (MEm) is assimilated into M-NAKCCA to make the information more refined. 2). To overcome the curse of dimensionality that usually occurs in the high-dimensional dataset, M-NAKCCA uses the Nyström approximation technology to compress the kernel matrix. Moreover, the T control chart is reconstructed and the corresponding control upper limit is re-configured to improve the method sensitivity and to better the fault detection performance. 3). The proposed M-NAKCCA framework is firstly used to monitor a wastewater treatment plant (WWTP) and chemical plant with diverse process behaviors. The experimental results showed that the M-NAKCCA framework achieved the best performance for both of case studies. 2
View less >
Journal Title
Process Safety and Environmental Protection
Volume
149
Subject
Applied mathematics
Chemical engineering
Maritime engineering
Resources engineering and extractive metallurgy